Recent studies have pointed out the important role of local water structures in protein conformational stability. Here, we present an accurate and computationally effective way to estimate the free energy contribution of the simplest water structure motif--the water bridge. Based on the combination of empirical parameters for accessible protein surface area and the explicit consideration of all possible water bridges with the protein, we introduce an improved protein solvation model. We find that accounting for water bridge formation in our model is essential to understand the conformational behavior of polypeptides in water. The model formulation, in fact, does not depend on the polypeptide nature of the solute and is therefore applicable to other flexible biomolecules (i.e., DNAs, RNAs, polysaccharides, etc.).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2144129 | PMC |
http://dx.doi.org/10.1110/ps.8.10.1982 | DOI Listing |
Integr Environ Assess Manag
January 2025
Faculty of Fine Arts, Design and Architecture Department of Landscape Architecture, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye.
Wetlands provide necessary ecosystem services, such as climate regulation and contribution to biodiversity at global and local scales, and they face spatial changes due to natural and anthropogenic factors. The degradation of the characteristic structure signals potential severe threats to biodiversity. This study aimed to monitor the long-term spatial changes of the Göksu Delta, a critical Ramsar site, using remote sensing techniques.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Federal University of the Agreste of Pernambuco, Garanhuns, Brazil.
The proliferation of cyanobacteria has become a significant water management challenge due to the increasing eutrophication of water supply reservoirs. Cyanobacterial blooms thrive on elevated nutrient concentrations and form extensive green mats, disrupting the local ecosystem. Furthermore, many cyanobacterial species can produce toxins that are lethal to vertebrates called cyanotoxins.
View Article and Find Full Text PDFClin Sci (Lond)
January 2025
Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
MSC, CNRS, Université Paris Cité, UMR 7057, F-75013 Paris, France.
We report on the dynamics of a soliton propagating on the surface of a fluid in a 4-m-long canal with a random or periodic bottom topography. Using a full space-and-time resolved wave field measurement, we evidence, for the first time experimentally, how the soliton is affected by the disorder, in the context of Anderson localization, and how localization depends on nonlinearity. For weak soliton amplitudes, the localization length is found in quantitative agreement with a linear shallow-water theory.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
School of Energy and Environmental Engineering, University of Science and Technology Beijing, 100083China.
Phthalates, known as phthalate esters (PAEs), are among the most ubiquitous pervasive env7ironmental endocrine disruptors (EEDs), extensively utilized globally in various facets of modern life due to their irreplaceable role as plasticizers. The exponential production and utilization of plastic goods have substantially escalated plastic waste accumulation. Consequently, PAEs have infiltrated the environment, contaminating food and drinking water reservoirs, posing notable threats to human health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!