Measuring antimicrobial effects on biofilm bacteria: from laboratory to field.

Methods Enzymol

Center for Biofilm Engineering, Montana State University, Bozeman 59717-3980, USA.

Published: December 1999

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0076-6879(99)10047-8DOI Listing

Publication Analysis

Top Keywords

measuring antimicrobial
4
antimicrobial effects
4
effects biofilm
4
biofilm bacteria
4
bacteria laboratory
4
laboratory field
4
measuring
1
effects
1
biofilm
1
bacteria
1

Similar Publications

Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.

View Article and Find Full Text PDF

Background: Multidrug-resistant bacteria (MDR) represent a significant global health concern and vary in specific settings. Spain reported several annual deaths attributed to MDR bacteria, mainly carbapenemase-producing Enterobacterales.

Objectives: We aimed to characterise the incidence and temporal trends of MDR bacterial infections or colonisations reported within the province of Granada (data from five hospitals), and to investigate factors linked to clinical vulnerability.

View Article and Find Full Text PDF

Mobile phones have become essential tools for health care workers around the world, but as high touch surfaces, they can harbor microorganisms that pose infection risks to patients and staff. As their use in hospitals increases, hospital managers must introduce measures to sanitize mobile phones and reduce risks of health care-associated infections. But such measures can involve substantial costs.

View Article and Find Full Text PDF

This research investigates the microbial inactivation potential of ternary TiO-CuO-chitosan nanocomposites (TCC NCs) applied as surface coatings on cowhide leather. Initially, bare TiO nanoparticles (NPs) and binary TiO-CuO (TC) NCs, with varying CuO NPs content, were prepared using an sol-gel method. These binary TC NCs were then modified with chitosan at varying weight percentages (2%, 4%, 6%, and 8%).

View Article and Find Full Text PDF

Background: Staphylococcus aureus is one of the most common pathogens that colonizes human skin/mucous membranes, where it causes local infection that can progress to invasive infection, resulting in high morbidity and mortality worldwide. This study aimed to investigate the antibiotic susceptibility and molecular characteristics of invasive S. aureus in children and women in Southwest China from 2018 to 2023 to provide novel insights helpful in preventing and treating S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!