We have studied the ability of yeast DNA polymerases to carry out repair of lesions caused by UV irradiation in Saccharomyces cerevisiae. By the analysis of postirradiation relative molecular mass changes in cellular DNA of different DNA polymerases mutant strains, it was established that mutations in DNA polymerases delta and epsilon showed accumulation of single-strand breaks indicating defective repair. Mutations in other DNA polymerase genes exhibited no defects in DNA repair. Thus, the data obtained suggest that DNA polymerases delta and epsilon are both necessary for DNA replication and for repair of lesions caused by UV irradiation. The results are discussed in the light of current concepts concerning the specificity of DNA polymerases in DNA repair.
Download full-text PDF |
Source |
---|
Mol Cell
January 2025
Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:
DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells.
View Article and Find Full Text PDFGenes Cells
January 2025
Department of Genetic Biochemistry, The National Institutes of Biomedical Innovation, Health and Nutrition, Shinjuku-ku, Tokyo, Japan.
Catalytic subunit of DNA polymerase ζ (REV3), involved in translesion-replication is evolutionarily conserved from yeast and plants to higher eukaryotes. However, a large intermediate domain is inserted in REV3 of humans and mice. The domain has "DUF4683" region, which is significantly similar to human neurite extension and migration factor (NEXMIF).
View Article and Find Full Text PDFBiol Direct
January 2025
Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.
View Article and Find Full Text PDFNat Chem
January 2025
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
The synthesis of large RNA with precise modifications at specific positions is in high demand for both basic research and therapeutic applications, but efficient methods are limited. Engineered DNA polymerases have recently emerged as attractive tools for RNA labelling, offering distinct advantages over conventional RNA polymerases. Here, through semi-rational designs, we engineered a DNA polymerase variant and used it to precisely incorporate a diverse range of modifications, including base modifications, 2'-ribose modifications and backbone modifications, into desired positions within RNA.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
Pseudouridine (Ψ) is an abundant RNA chemical modification that plays critical biological functions. Current Ψ detection methods are limited in identifying Ψs at base-resolution in U-rich sequence contexts, where Ψ occurs frequently. Here we report "Mut-Ψ-seq" that utilizes the classic N-cyclohexyl N'-(2-morpholinoethyl)carbodiimide (CMC) agent and an evolved reverse transcriptase ("RT-1306") for Ψ mapping at base-resolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!