1. Whole-cell voltage-gated K+ currents and the K+ current response to growth hormone-releasing hormone (GHRH) were characterised in primary cultures of human acromegalic somatotropes. 2. Both delayed rectifier (IK) and transient (IA) K+ currents were recorded from human somatotropes held at -80 mV and bathed in a solution containing Cd2+ (1 mM), TTX (1 microM) and a low concentration of Ca2+ (0.5 mM). Only IK was recorded, however, when a holding potential of -40 mV was used. 3. GHRH (10 nM) immediately and significantly reduced the amplitude of both IA and IK. While the reduction in the amplitude of IA was fully reversed following the removal of GHRH, the amplitude of IK had only partially recovered 10 min after GHRH removal. In addition, GHRH shifted the voltage-dependent inactivation curve of IA by 13.5 mV in the negative direction. 4. In a low Ca2+ and Cd2+-containing solution, the Ca2+-activated K+ channel blockers apamin (100 nM and 1 microM) and charybdotoxin (1 microM) did not alter K+ currents or the effect of GHRH on the recorded K+ currents. 5. The whole-cell K+ currents and their responses to GHRH were unaffected by the application of 8-bromo-cAMP (100 microM), Rp-cAMP (100 microM) or the protein kinase A (PKA) inhibitor H89 (1 microM). In addition, intracellular dialysis of the PKA inhibitory peptide PKI (10 microM) had no effect on the K+ current response to GHRH. 6. While the application of protein kinase C (PKC) inhibitors calphostin C (100 nM) or chelerythrine (1 microM) did not affect the amplitude of the K+ currents, the K+ current response to GHRH was significantly attenuated. Downregulation of PKC with phorbol 12,13-dibutyrate (PDBu, 0.5 microM for 16 h) also abolished the K+ current response to GHRH. In addition, intracellular dialysis of somatotropes with the PKC inhibitory peptide PKC19-36 (1 microM) prevented the GHRH-induced decrease in the amplitude of the voltage-gated K+ currents. Local application of PDBu (1 microM) significantly reduced the amplitude of the voltage-gated K+ currents in a similar manner to that induced by GHRH, but without clear recovery upon removal. 7. This study demonstrates that GHRH decreases voltage-gated K+ currents via a PKC-mediated pathway in human adenoma somatotropes, rather than by the cAMP-PKA pathway that is usually implicated in the actions of GHRH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2269620 | PMC |
http://dx.doi.org/10.1111/j.1469-7793.1999.00697.x | DOI Listing |
J Gen Physiol
March 2025
Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany.
Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA.
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive.
View Article and Find Full Text PDFMalar J
January 2025
Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
Background: Emodepside is an anthelmintic used in veterinary medicine that is currently under investigation in human clinical trials for the treatment of soil-transmitted helminths and possibly Onchocerca volvulus. Emodepside targets the calcium-activated voltage-gated potassium slowpoke 1 (SLO-1) channels of presynaptic nerves of pharynx and body wall muscle cells of nematodes leading to paralysis, reduced locomotion and egg laying, starvation, and death. Emodepside also has activity against Drosophila melanogaster SLO-1 channels.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
Voltage-gated ion channels (VGICs) are crucial targets for neuropsychiatric therapeutics owing to their role in controlling neuronal excitability and the established link between their dysfunction and neurological diseases, highlighting the importance of identifying modulators with distinct mechanisms. Here we report two small-molecule modulators with the same chemical scaffold, Ebio2 and Ebio3, targeting a potassium channel KCNQ2, with opposite effects: Ebio2 acts as a potent activator, whereas Ebio3 serves as a potent and selective inhibitor. Guided by cryogenic electron microscopy, patch-clamp recordings and molecular dynamics simulations, we reveal that Ebio3 attaches to the outside of the inner gate, employing a unique non-blocking inhibitory mechanism that directly squeezes the S6 pore helix to inactivate the KCNQ2 channel.
View Article and Find Full Text PDFOpening of the cardiac voltage-gated Na+ channel (Nav1.5) is responsible for robust depolarization of the cardiac action potential, while inactivation, which rapidly follows, allows for repolarization. Regulation of both the voltage- and time-dependent kinetics of Nav1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!