In recent years, molecular genetic approaches to the study of human diseases have yielded unexpected insights into the pathophysiology of many dermatologic disorders, most recently, disorders involving hair loss (i.e., alopecia). In the future, it is anticipated that treatments for many of these disorders will be in the form of gene-based therapies. These approaches would not be possible without a fundamental understanding of the genes that underlie the respective genodermatoses, and how mutations in those genes give rise to the phenotype. In this review, we illustrate how these approaches apply to a rare inherited disorder involving hair loss in humans, known as papular atrichia, and discuss the corresponding mouse models, known as hairless and rhino. It is anticipated that these insights will someday lead to effective, rationally designed, genetic therapies for this group of psychologically devastating disorders, and eventually extend into more complex phenotypes seen in disorders such as alopecia areata and androgenetic alopecia.
Download full-text PDF |
Source |
---|
Plant Cell Physiol
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan.
Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.
View Article and Find Full Text PDFJ Dermatol
January 2025
Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
Alopecia areata (AA) is a chronic, autoimmune skin disease characterized by non-scarring hair loss. Baricitinib, a Janus kinase inhibitor (JAKi), prevents hair loss and promotes hair regrowth by inhibiting the inflammatory Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway involved in cytotoxic T cell responses targeting hair follicles. The introduction of JAKi has transformed treatment against severe AA.
View Article and Find Full Text PDFAge-related hearing loss affects one-third of the population over 65 years. However, the diverse pathologies underlying these heterogenous phenotypes complicate genetic studies. To overcome challenges associated with accurate phenotyping for older adults with hearing loss, we applied computational phenotyping approaches based on audiometrically measured hearing loss.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Surgical Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India.
Germ cell tumours are usually found in the gonads, while the most common extragonadal site is the anterior mediastinum. When these tumours involve the tracheobronchial tree, patients present with trichoptysis or coughing up of hair. We present a rare case of a woman who presented with trichoptysis and was evaluated and diagnosed with benign mature teratoma of the anterior mediastinum with bronchopulmonary involvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!