Although phage display is a powerful way of selecting ligands against purified target proteins, it is less effective for selecting functional ligands for complex targets like living cells. Accordingly, phage display has had limited utility in the development of targeting agents for gene therapy vectors. By adapting a filamentous bacteriophage for gene delivery to mammalian cells, however, we show here that it is possible to screen phage libraries for functional ligands capable of delivering DNA to cells. For example, when targeted with epidermal growth factor (EGF), M13 bacteriophage were capable of delivering a green fluorescent protein (GFP) gene to EGF receptor bearing cells in a ligand-, time-, and phage concentration-dependent manner. The EGF-targeted phage transduced COS-1 cells in a highly specific manner as demonstrated by competition with excess free EGF or alternatively with anti-EGF receptor antibodies. We further demonstrate that EGF-phage can be selected, by their ability to transduce EGF receptor bearing cells from libraries of peptide display phage. When phage were incubated with COS-1 cells, EGF ligand-encoding sequences were recovered by PCR from FACsorted, GFP-positive cells and the EGF-displaying phage were enriched 1 million-fold by four rounds of selection. These data suggest the feasibility of applying molecular evolution to phage gene delivery to select novel cell-specific DNA-targeting ligands. The same approach could be used to select genetically altered phage that are specifically designed and evolved as gene therapy vectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bbrc.1999.1603 | DOI Listing |
Virol J
January 2025
Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
Background: Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.
View Article and Find Full Text PDFVet Microbiol
January 2025
Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego St., Wrocław 51-630, Poland. Electronic address:
Avian pathogenic Escherichia coli (APEC) is the main causative agent of colibacillosis, causing poultry respiratory infections, mortality and economic loss. APEC poses a serious threat to public health and food safety due to its multi-drug resistance and capacity to form biofilms. Bacteriophages (phages) have emerged as an alternative to antibiotics.
View Article and Find Full Text PDFScience
January 2025
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
Caspase family proteases and Toll/interleukin-1 receptor (TIR)-domain proteins have central roles in innate immunity and regulated cell death in humans. We describe a bacterial immune system comprising both a caspase-like protease and a TIR-domain protein. We found that the TIR protein, once it recognizes phage invasion, produces the previously unknown immune signaling molecule adenosine 5'-diphosphate-cyclo[N7:1'']-ribose (N7-cADPR).
View Article and Find Full Text PDFIn 2021, a year before ChatGPT took the world by storm amid the excitement about generative artificial intelligence (AI), AlphaFold 2 cracked the 50-year-old protein-folding problem, predicting three-dimensional (3D) structures for more than 200 million proteins from their amino acid sequences. This accomplishment was a precursor to an unprecedented burgeoning of large language models (LLMs) in the life sciences. That was just the beginning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!