Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells.

Biochem Biophys Res Commun

Division of Cancer Biology Research, Sunnybrook and Women's College Health Sciences Centre, S-218 Research Building, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.

Published: November 1999

Vascular endothelial growth factor (VEGF) is a potent angiogenic factor that has been shown to act as an endothelial cell mitogen as well as a vascular permeability factor. Several recent reports have also implicated VEGF as a major survival factor for endothelial cells during angiogenesis and vasculogenesis along with other growth factors such as bFGF and angiopoietin-1. VEGF has been shown to mediate this additional function, at least in part through the induction of bcl-2 and the activation of the PI3 kinase-Akt/PKB signaling pathway. We report here that VEGF can also mediate the induction/upregulation of members of a newly discovered family of antiapoptotic proteins, namely the Inhibitors of Apoptosis (IAP), in vascular endothelial cells. We show that VEGF(165) leads to the induction of XIAP (2.9-fold) and survivin (19.1-fold) protein in human umbilical vein endothelial cells (HUVECs). In contrast, bFGF had little effect on XIAP expression, but produced approximately a 10-fold induction on survivin. VEGF-dependent upregulation of survivin could be prevented by cell cycle arrest in the G1 and S phases. These findings implicate that the survival and mitotic functions of VEGF in an angiogenic context may be more intrinsically related than previously anticipated. Moreover, they also raise the possibility of therapeutically targeting XIAP or survivin in antiangiogenic therapy as a means of suppressing tumor growth, in addition to directly targeting tumor cells which express these survival proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.1999.1589DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
vascular endothelial
12
family antiapoptotic
8
antiapoptotic proteins
8
factor endothelial
8
vegf mediate
8
vegf
6
endothelial
6
survivin
5
cells
5

Similar Publications

The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life.

View Article and Find Full Text PDF

Background: Inflammation is a driver of thrombosis, but the phenomenon of thromboinflammation has been defined only recently, bringing together the multiple pathways involved. models can support the development of new therapeutics targeting the endothelium and also assess the existing immunomodulatory drugs, such as hydroxychloroquine, in modulating the inflammation-driven endothelial prothrombotic phenotype.

Objectives: To develop a model for thrombin generation (TG) on the surface of human endothelial cells (ECs) to assess pro/antithrombotic properties in response to inflammation.

View Article and Find Full Text PDF

Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.

Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.

Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.

View Article and Find Full Text PDF

Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments.

Bioact Mater

May 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.

Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.

View Article and Find Full Text PDF

Introduction: Systemic sclerosis is a complex disease characterized by the fibrosis and vasculopathy.

Aim: We aimed to assess scleroderma by examining involucrin, an early terminal differentiation marker of epidermal keratinocytes.

Material And Methods: Immunolocalization of involucrin was performed in healthy controls and patients with scleroderma lesions by using an immunofluorescence (IF) assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!