Rhodococcus erythropolis I-19, containing multiple copies of key dsz genes, was used to desulfurize alkylated dibenzothiophenes (Cx-DBTs) found in a hydrodesulfurized middle-distillate petroleum (MD 1850). Initial desulfurization rates of dibenzothiophene (DBT) and MD 1850 by I-19 were 5.0 and 2.5 micromol g dry cell weight(-1) min(-1), more than 25-fold higher than that for wild-type bacteria. According to sulfur K-edge X-ray absorption near-edge structure (XANES) analysis, thiophenic compounds accounted for >95% of the total sulfur found in MD 1850, predominantly Cx-DBTs and alkylated benzothiophenes. Extensive biodesulfurization resulted in a 67% reduction of total sulfur from 1,850 to 615 ppm S. XANES analysis of the 615-ppm material gave a sulfur distribution of 75% thiophenes, 11% sulfides, 2% sulfoxides, and 12% sulfones. I-19 preferentially desulfurized DBT and C1-DBTs, followed by the more highly alkylated Cx-DBTs. Shifting zero- to first-order (first-order) desulfurization rate kinetics were observed when MD 1850 was diluted with hexadecane. Apparent saturation rate constant (K(0)) and half-saturation rate constant (K(1)) values were calculated to be 2.8 micromol g dry cell weight(-1) min(-1) and 130 ppm, respectively. However, partial biocatalytic reduction of MD 1850 sulfur concentration followed by determination of initial rates with fresh biocatalyst led to a sigmoidal kinetic behavior. A competitive-substrate model suggested that the apparent K(1) values for each group of Cx-DBTs increased with increasing alkylation. Overall desulfurization rate kinetics with I-19 were affected by the concentration and distribution of Cx-DBTs according to the number and/or lengths of alkyl groups attached to the basic ring structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC91668 | PMC |
http://dx.doi.org/10.1128/AEM.65.11.4967-4972.1999 | DOI Listing |
ACS Omega
November 2024
Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacán, Gustavo A. Madero 07730, CDMX, Mexico.
The previous step before the catalytic activity of MoS nanoparticles for the hydrodesulfurization of dibenzothiophene (DBT), i.e., the DBT adsorption, is studied through dissipative-particle-dynamics (DPD) simulations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
Recovery of homogeneous photocatalysts from reaction mixture is challenging, affecting the cost-effectiveness, and masks their advantages, including 4-8 fold higher catalytic activity than corresponding heterogeneous counterparts. Incorporation of long alkyl chains within the rigid π-conjugated backbone of conjugated polymers can augment their solubility in particular organic solvents; accordingly, they can function as homogeneous photocatalysts. Consequently, these polymers facilitate the recovery of catalysts through the reverse dissolution process, thus creating a well-suited platform to meet certain advantages of both homo- and heterogeneous photocatalysts.
View Article and Find Full Text PDFPol J Microbiol
August 2024
School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, China.
The addition of biogas liquid is a practical way to improve the yield of biological coalbed methane. The microbial composition in biogas liquid is complex, and whether it could participate in the sulfur conversion of coal remains unknown. In this study, sulfur conversion-related microbial communities were enriched from biogas liquid, which was dominated by genera , , , and .
View Article and Find Full Text PDFPhotochem Photobiol
June 2024
Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA.
N-phenyl dibenzothiophene sulfoximine has been demonstrated to produce phenyl nitrene and dibenzothiophene S-oxide upon irradiation with UV-A light, and dibenzothiophene S-oxide upon further irradiation releases triplet atomic oxygen. Thus, N-phenyl dibenzothiophene sulfoximine exhibits a rare dual-release capability in its photochemistry. In this work, N-substituted dibenzothiophene sulfoximine derivatives are irradiated with UV-A light to compare their photochemistry and quantum yield of dibenzothiophene S-oxide production with that of N-phenyl dibenzothiophene sulfoximine.
View Article and Find Full Text PDFSci Total Environ
October 2024
Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
Monitoring only 16 priority PAHs (Pri-PAHs) may greatly underestimate the pollutant load and toxicity of polycyclic aromatic compounds (PACs) in aquatic environments. There is an urgent need to reevaluate the list of priority PACs. To determine which PACs deserve priority monitoring, the occurrence, sources, and toxicity of 78 PACs, including 24 parent PAHs (Par-PAHs), 49 alkylated PAHs (Alk-PAHs), 3 oxygenated PAHs (OPAHs), carbazole, and dibenzothiophene were investigated for the first time in Lake Chaohu sediments, China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!