Background And Purpose: Systemic invasive aspergillosis involves the brain through hematogenous dissemination. A retrospective review of 18 patients with aspergillosis involving the brain was performed in order to present imaging findings and thereby broaden the understanding of the distribution and imaging characteristics of brain Aspergillus infection and to facilitate its early diagnosis.

Methods: The neuroimaging studies of 17 biopsy- or autopsy-proved cases and one clinically diagnosed case were examined retrospectively by two neuroradiologists. The studies were evaluated for anatomic distribution of lesions, signal characteristics of lesions, enhancement, hemorrhage, and progression on serial studies (when performed). Medical records, biopsy reports, and autopsy findings were reviewed.

Results: Thirteen of 18 patients had involvement of the basal nuclei and/or thalami. Nine of the 10 patients with lesions at the corticomedullary junction also had lesions in the basal nuclei or thalami. Callosal lesions were seen in seven patients. Progression of lesion number and size was seen in all 11 patients in whom serial studies had been performed. Enhancement was minimal or absent in most cases. There was gross hemorrhage in eight of the 18, and definite ring-enhancement in three.

Conclusion: Among our cases, lesions in perforating artery territories were more common than those at the corticomedullary junction. Ring enhancement and gross hemorrhage may be present, but are not necessary for the prospective diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056178PMC

Publication Analysis

Top Keywords

aspergillosis involving
8
involving brain
8
distribution imaging
8
imaging characteristics
8
serial studies
8
studies performed
8
basal nuclei
8
corticomedullary junction
8
gross hemorrhage
8
lesions
6

Similar Publications

SidF, a dual substrate N5-acetyl-N5-hydroxy-L-ornithine transacetylase involved in siderophore biosynthesis.

J Struct Biol X

June 2025

Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy.

Siderophore-mediated iron acquisition is essential for the virulence of , a fungus causing life-threatening aspergillosis. Drugs targeting the siderophore biosynthetic pathway could help improve disease management. The transacetylases SidF and SidL generate intermediates for different siderophores in .

View Article and Find Full Text PDF

Chronic granulomatous disease is the inborn error of immunity with the highest frequency of invasive aspergillosis. In this context, invasive aspergillosis is frequent in adolescence, with rare cases before one year of age. We present a case of chronic granulomatous disease and invasive aspergillosis in a four-month-old infant.

View Article and Find Full Text PDF

Background: Invasive fungal sinusitis (IFS) can present as a mild disease to life-threatening infection. A recent surge in cases was seen due to the coronavirus disease 2019 (COVID-19) pandemic. Many patients require surgical debridement and hence imaging [contrast-enhanced computed tomography (CECT) of the paranasal sinuses (PNS)] to document the extent of the disease.

View Article and Find Full Text PDF

The proteomic response of to amphotericin B (AmB) reveals the involvement of the RTA-like protein RtaA in AmB resistance.

Microlife

December 2024

Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany.

The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by . Increasing resistance to AmB in clinical isolates of species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of exposed to sublethal concentrations of AmB and AmBisome.

View Article and Find Full Text PDF

The mRNA-binding protein KSRP (KH-type splicing regulatory protein) is known to modulate immune cell functions post-transcriptionally, e.g., by reducing the mRNA stability of cytokines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!