Mx proteins are large GTPases, which play a pivotal role in the interferon type I-mediated response against viral infections. The human MxA inhibits the replication of several RNA viruses and is organized in oligomeric structures. Using two different experimental approaches, the mammalian two-hybrid system and an interaction dependent nuclear translocation approach, three domains in the carboxyl-terminal moiety were identified that are involved in the oligomerization of MxA. The first consists of a carboxyl-terminal amphipathic helix (LZ1), which binds to a more proximal part of the same molecule. This intramolecular backfolding is a prerequisite for the formation of an intermolecular complex. This intermolecular interaction is mediated by two domains, a poorly defined region generated by the intramolecular interaction and a domain located between amino acids 363 and 415. Co-expression of wild-type MxA with various mutant fragments thereof revealed that the presence of the carboxyl-terminal region comprising the amphipathic helices LZ1 and LZ2 is necessary and sufficient to exert a dominant negative effect. This finding suggests that the functional interference of the carboxyl-terminal region is due to competition for binding of an as yet unidentified cellular or viral target molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.274.45.32071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!