Mx proteins are large GTPases, which play a pivotal role in the interferon type I-mediated response against viral infections. The human MxA inhibits the replication of several RNA viruses and is organized in oligomeric structures. Using two different experimental approaches, the mammalian two-hybrid system and an interaction dependent nuclear translocation approach, three domains in the carboxyl-terminal moiety were identified that are involved in the oligomerization of MxA. The first consists of a carboxyl-terminal amphipathic helix (LZ1), which binds to a more proximal part of the same molecule. This intramolecular backfolding is a prerequisite for the formation of an intermolecular complex. This intermolecular interaction is mediated by two domains, a poorly defined region generated by the intramolecular interaction and a domain located between amino acids 363 and 415. Co-expression of wild-type MxA with various mutant fragments thereof revealed that the presence of the carboxyl-terminal region comprising the amphipathic helices LZ1 and LZ2 is necessary and sufficient to exert a dominant negative effect. This finding suggests that the functional interference of the carboxyl-terminal region is due to competition for binding of an as yet unidentified cellular or viral target molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.45.32071DOI Listing

Publication Analysis

Top Keywords

intramolecular backfolding
8
carboxyl-terminal region
8
carboxyl-terminal
5
backfolding carboxyl-terminal
4
mxa
4
carboxyl-terminal mxa
4
mxa protein
4
protein prerequisite
4
prerequisite oligomerization
4
oligomerization proteins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!