MRP8 and MRP14 are members of the S100 family of calcium-binding proteins which play an important role during calcium-induced activation of phagocytes. Both proteins form noncovalently associated complexes as a prerequisite for biological functions. The exact stoichiometric composition of these complexes, however, has not been completely clarified yet. In the present study we show for the first time by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI-MS) the calcium-induced formation of noncovalently associated (MRP8/MRP14)2 tetramers. Furthermore, we could determine posttranslational modifications of MRP8 and MRP14, the stoichiometric proportion of the two known MRP14 isoforms in the complexes as well as the number of calcium ions bound to the single MRP8 and MRP14 monomers and tetramers. MRP14 showed a higher affinity for calcium than MRP8. Upon complex formation the calcium binding increased to maximal saturation of the known EF hands in the complexed forms. Calcium-induced stabilization of the MRP8/MRP14 complexes was confirmed by DSC studies. Our results extend scope and application of UV-MALDI-MS by allowing identification of noncovalent protein complexes, the identification of minor alterations of subunits in such complexes as well as the determination of bound calcium ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1044-0305(99)00085-9 | DOI Listing |
Brain Res Bull
November 2024
Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China. Electronic address:
ACS Infect Dis
February 2024
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Pathogen sensing by the mammalian host induces a pro-inflammatory response that involves release of the antimicrobial metal-sequestering protein calprotectin (CP, S100A8/S100A9 heterooligomer, MRP8/MRP14 heterooligomer) from neutrophils. Biochemical investigations on human CP (hCP) have informed the molecular basis of how this protein sequesters metal ions. Murine models of infection have provided invaluable insights into the ability of murine CP (mCP) to compete with bacterial pathogens for essential metal nutrients.
View Article and Find Full Text PDFImmun Inflamm Dis
September 2023
Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Objective: Breakdown of tolerance and abnormal activation of B cells is an important mechanism in the pathogenesis of Graves' disease (GD). High levels of thyroid hormones (THs) play important roles in GD progression. However, the interactions between THs and abnormal activation of B cells remain elusive.
View Article and Find Full Text PDFCell Rep
August 2023
Institute of Immunology, University of Münster, Münster, Germany; Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany. Electronic address:
Immune-suppressive effects of myeloid-derived suppressor cells (MDSCs) are well characterized during anti-tumor immunity. The complex mechanisms promoting MDSC development and their regulatory effects during autoimmune diseases are less understood. We demonstrate that the endogenous alarmin S100A8/A9 reprograms myeloid cells to a T cell suppressing phenotype during autoimmune arthritis.
View Article and Find Full Text PDFThere is a significant overlap between HIV infection and substance-use disorders. Dopamine (DA) is the most abundantly upregulated neurotransmitter in methamphetamine abuse, with receptors (DRD1-5) that are expressed by neurons as well as by a large diversity of cell types, including innate immune cells that are the targets of HIV infection, making them responsive to the hyperdopaminergic environment that is characteristic of stimulant drugs. Therefore, the presence of high levels of dopamine may affect the pathogenesis of HIV, particularly in the brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!