We report the synthesis of a radioactive, photolabile 2'-O-methyloligoRNA probe, 2258-53/52(SAz)-48, PHONT1, and its exploitation in identifying 23S rRNA nucleotides neighboring the so-called 'P-loop'. The probe is complementary to nt 2248-2258 in Escherichia coli 50S subunits. PHONT1 contains a p-azidophenacyl group attached to a phosphorothioate bridge between the nucleotides complementary to the positions 2252-2253, such that the photogenerated nitrene is maximally 17-19 A from 23S RNA nucleotides G2252 and G2253. PHONT1 binds to the 50S subunit, and photoincorporates within or immediately adjacent to its target site, as well as into several nucleotides falling between G2357 and A2430. The significance of these results for the structure of the peptidyl transferase center is considered. The PHONT approach is generally applicable to studies of complex RNA-containing molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC148719 | PMC |
http://dx.doi.org/10.1093/nar/27.22.4376 | DOI Listing |
The sarcin-ricin loop (SRL) is one of the most conserved segments of ribosomal RNA (rRNA). Translational GTPases (trGTPases), such as EF-G and EF-Tu and IF2, form contacts with the SRL that are critical for GTP hydrolysis and factor function. Previous studies showed that expression of 23S rRNA lacking the SRL confers a dominant lethal phenotype in E.
View Article and Find Full Text PDFEMBO Rep
January 2025
Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
Cyclic diguanosine monophosphate (c-di-GMP) is a ubiquitous bacterial secondary messenger with diverse functions. A previous Escherichia coli proteome microarray identified that c-di-GMP binds to the 23S rRNA methyltransferases RlmI and RlmE. Here we show that c-di-GMP inhibits RlmI activity in rRNA methylation assays, and that it modulates ribosome assembly in the presence of kanamycin.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Civil and Construction Engineering and Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana, United States 47907. Electronic address:
This study evaluated microbial fitness under selective pressure of various erythromycin concentrations and the development of resistance genes in Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis).
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
Identification and analysis of repetitive elements (motifs) in DNA, RNA, and protein macromolecules is an important step in studying structure and functions of these biopolymers. Functional role of NA-BSE (non-adjacent base-stacking element, a widespread tertiary structure motif in various RNAs) in RNA-RNA interactions at various stages of the ribosome function during translation has been investigated in this work. Motifs of this type have been described to date that are reversibly formed during mRNA decoding, moving of the ribosome subunits relative to each other, and moving mRNA and tRNA along the ribosome during translocation.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania.
This study examines the prevalence and the mechanisms of antibiotic resistance in isolates collected from healthcare units in Northwestern Transylvania, Romania, between 2022 and 2023. Given the alarming rise in antibiotic resistance, the study screened 34 isolates for resistance to 10 antibiotics, 46 ARGs, and integrase genes using PCR analysis. The results reveal a concerning increase in multidrug-resistant (MDR) and extensively drug-resistant (XDR) isolates over the two-year period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!