Copper overload and deficiency are known to cause morphological and functional mitochondrial abnormalities. The reverse transcriptase-polymerase chain reaction (RT-PCR)-based method of differential display of mRNA was used to identify genes with altered expression in cultured human hepatoma cells (Hep G2) exposed to increasing concentrations of copper (0-100 microM, 24 h). Copper regulation of a cloned PCR product, identified as the gene for the mitochondrially encoded cytochrome b, was confirmed by Northern analysis and in situ hybridization. Copper toxicity increased cytochrome b mRNA abundance up to 3.6-fold, and copper chelation reduced it by 50%. Hepatic cytochrome b mRNA was also increased in rats fed a high-copper diet. Thapsigargin treatment resulted in a significant increase in cytochrome b mRNA, suggesting that an increase in intracellular calcium may be involved in the mechanism of copper action. Furthermore, although cyclohexamide (CHX) alone did not increase cytochrome b mRNA, the addition of CHX and copper resulted in a sixfold increase. These data suggest a role for cytochrome b in the response to increases or decreases in hepatic copper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02783856 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!