Catalysis of drug oxidation during embryogenesis in human hepatic tissues using imipramine as a model substrate.

Drug Metab Dispos

Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington 98195, USA.

Published: November 1999

We investigated the catalysis of drug monooxygenation by human embryonic hepatic tissues at a very early stage of gestation (days 52-59). Imipramine was used as a model substrate and the metabolites generated were identified and quantified by electrospray mass spectroscopy and HPLC. The primary metabolite generated was desipramine. It was reported previously from this and other laboratories that cytochrome P-450 monooxygenase (CYP) 1A1, 1B1, 2E1, and 3A7 are each expressed in human embryonic hepatic tissues, and selective inhibitors were therefore used to elucidate their respective roles. Furafylline did not inhibit the reaction, supporting that CYP1A2 was not expressed in human embryonic hepatic tissues. Diethyldithiocarbamate also failed to inhibit the same reaction, suggesting that CYP2E1 did not play a significant role in catalyzing the reaction. Triacetyloleandomycin inhibited the reaction by approximately 90%, suggesting that CYP3A7 was primarily responsible for catalyzing the reaction. However, alpha-naphthoflavone inhibited the same reaction by approximately 70%, suggesting that CYP1A1 and/or CYP1B1 may also catalyze the reaction substantially. To explore this issue more, a cDNA-expressed human CYP3A7 (CYP3A7 SUPERSOMES) was incubated with alpha-naphthoflavone (1 microM). Generation of desipramine was inhibited by approximately 40 to 50%. The addition of the CYP3A subfamily selective inhibitor triacetyloleandomycin (1 microM) produced no statistically significant inhibition in reactions catalyzed by CYP1A1 or 1B1 SUPERSOMES. Taken together, the results indicated that CYP3A7 was the major if not sole isoform responsible for catalysis of the N-demethylation of imipramine in human hepatic tissues during embryogenesis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hepatic tissues
20
human embryonic
12
embryonic hepatic
12
catalysis drug
8
human hepatic
8
imipramine model
8
model substrate
8
expressed human
8
inhibit reaction
8
catalyzing reaction
8

Similar Publications

The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.

View Article and Find Full Text PDF

Retinoids and retinoid-binding proteins: Unexpected roles in metabolic disease.

Curr Top Dev Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States.

Alterations in tissue expression levels of both retinol-binding protein 2 (RBP2) and retinol-binding protein 4 (RBP4) have been associated with metabolic disease, specifically with obesity, glucose intolerance and hepatic steatosis. Our laboratories have shown that this involves novel pathways not previously considered as possible linkages between impaired retinoid metabolism and metabolic disease development. We have established both biochemically and structurally that RBP2 binds with very high affinity to very long-chain unsaturated 2-monoacylglycerols like the canonical endocannabinoid 2-arachidonoyl glycerol (2-AG) and other endocannabinoid-like substances.

View Article and Find Full Text PDF

Modulation of γδ T cells by USF3: Implications for liver fibrosis and immune regulation.

Int Immunopharmacol

January 2025

Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China. Electronic address:

Previous studies have established that γδ T cells play a significant role in liver fibrosis. However, their specific functions and mechanisms in fibrotic liver tissue remain unclear. Using online microarray expression profiles, we observed that USF3 was upregulated in patients with liver fibrosis and was associated with immune cells.

View Article and Find Full Text PDF

Angiotensin II (Ang II) is the most active peptide hormone produced by the renin-angiotensin system (RAS). Genetic deletion of genes that ultimately restrict Ang II formation has been shown to result in marked anemia in mice. In this study, adult mice with a genetic deletion of the RAS precursor protein angiotensinogen (Agt-KO) were used.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!