The purpose of the present study was to analyse clinically failed and retrieved implants prior to and after cleaning by means of scanning electron microscopy (SEM) and X-ray induced photoelectron spectroscopy (XPS) as compared to unused controls. Six different chemical and physical techniques for cleaning of contaminated titanium implants were evaluated: 1) rinsing in absolute ethanol for 10 min, 2) cleaning in ultrasonic baths containing trichloroethylene (TRI) and absolute ethanol, 10 min in each solution, 3) abrasive cleaning for 30 s, 4) cleaning in supersaturated citric acid for 30 s, 5) cleaning with continuous CO2-laser in dry conditions at 5 W for 10 s, 6) cleaning with continuous CO2-laser in wet conditions (saline) at 5 W for 10 s. SEM of failed implants showed the presence of contaminants of varying sizes and XPS showed almost no titanium but high carbon signals. XPS of unused titanium implants showed lower levels of titanium as previously reported, probably due to contamination of carbon which increased with time in room air. Cleaning of used implants in citric acid followed by rinsing with deionized water for 5 min followed by cleaning in ultrasonic baths with TRI and absolute ethanol gave the best results with regard to macroscopical appearance and surface composition. However, as compared to the unused implants the results from an element composition point of view were still unsatisfactory. It is concluded that further development and testing of techniques for cleaning of organically contaminated titanium is needed.

Download full-text PDF

Source
http://dx.doi.org/10.1034/j.1600-0501.1998.090306.xDOI Listing

Publication Analysis

Top Keywords

techniques cleaning
12
contaminated titanium
12
titanium implants
12
absolute ethanol
12
cleaning
11
chemical physical
8
physical techniques
8
cleaning contaminated
8
compared unused
8
ethanol min
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!