Purpose: To validate whether the number of aberrations could be used as a measure of the radiosensitivity of human tumour cells. If so, this would potentially provide a more rapid method than the colony assay to predict radiocurability in human tumour biopsy material.
Materials And Methods: A panel of 13 human tumour cell lines was investigated, covering a wide range of radiosensitivities. Fluorescence in situ hybridization (FISH) employing whole chromosome probes was used to detect aberrations.
Results: A dose-dependent increase in radiation-induced chromosome aberrations was observed in all cell lines. A good correlation (r=0.90) was found between cell survival and total chromosome aberrations in 12 of the 13 cell lines (92%), with one exception. A poorer correlation was observed between cell survival and stable- (r=0.85) and unstable-type aberrations (r=0.81). Survival-aberration correlations for individual radiation doses were worse, although statistically significant. The exceptional cell line showed significantly more aberrations for a given level of cell kill than expected based on data for the other lines.
Conclusion: This study indicates that radiation-induced chromosome aberrations can be used as a potential predictor of intrinsic radiosensitivity for the majority of human tumours when more than one dose level is tested. This could aid the design of radiotherapy schedules for each individual patient, or in the decision of whether to use an alternative therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/095530099139638 | DOI Listing |
Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM, FPD/AML, -FPD), caused by monoallelic deleterious germline variants, is characterized by bleeding diathesis and predisposition for hematologic malignancies, particularly myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Clinical data on FPDMM-associated AML (FPDMM-AML) are limited, complicating evidence-based clinical decision-making. Here, we present retrospective genetic and clinical data of the largest cohort of FPDMM patients reported to date.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Uşak University, Uşak, Turkey.
Sulfoxaflor (SFX) is an insecticide that is commonly used for the control of sap-feeding insects. Since SFX is extensively applied globally, it has been implicated in the substantial induction of environmental toxicity. Therefore, in this study, Allium cepa roots have been employed to elucidate the potential cytogenotoxic effects of SFX in non-target cells by examination of mitotic index (MI), chromosomal aberrations (CAs), and DNA damage.
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria.
Microchimerism is defined as the presence of a small population of genetically distinct cells within a host that is derived from another individual. Throughout pregnancy, maternal and fetal cells are known to traffic across the feto-maternal interface and result in maternal and fetal microchimerism, respectively. However, the routes of cell transfer, the molecular signaling as well as the timing in which trafficking takes place are still not completely understood.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
In tetraploid F1 populations, traditional segregation distortion tests often inaccurately flag SNPs due to ignoring polyploid meiosis processes and genotype uncertainty. We develop tests that account for these factors. Genotype data from tetraploid F1 populations are often collected in breeding programs for mapping and genomic selection purposes.
View Article and Find Full Text PDFBackground: AML-M4Eo is a type of AML characterized by malignant proliferation of granulocyte and monocyte precursor cells accompanied by eosinophilia. Patients present as anemia, infection, bleeding, and tissue and organ infiltration. MICM classification makes the classification of AML more accurate and lays a foundation for the correct treatment and prognosis of AML.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!