TRF1 is a key player in telomere length regulation. Because length control was proposed to depend on the architecture of telomeres, we studied how TRF1 binds telomeric TTAGGG repeat DNA and alters its conformation. Although the single Myb-type helix-turn-helix motif of a TRF1 monomer can interact with telomeric DNA, TRF1 predominantly binds as a homodimer. Systematic Evolution of Ligands by Exponential enrichment (SELEX) with dimeric TRF1 revealed a bipartite telomeric recognition site with extreme spatial variability. Optimal sites have two copies of a 5'-YTAGGGTTR-3' half-site positioned without constraint on distance or orientation. Analysis of binding affinities and DNase I footprinting showed that both half-sites are simultaneously contacted by the TRF1 dimer, and electron microscopy revealed looping of the intervening DNA. We propose that a flexible segment in TRF1 allows the two Myb domains of the homodimer to interact independently with variably positioned half-sites. This unusual DNA binding mode is directly relevant to the proposed architectural role of TRF1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171640PMC
http://dx.doi.org/10.1093/emboj/18.20.5735DOI Listing

Publication Analysis

Top Keywords

trf1 binds
12
trf1
9
bipartite telomeric
8
site extreme
8
extreme spatial
8
binds bipartite
4
telomeric
4
telomeric site
4
spatial flexibility
4
flexibility trf1
4

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

TRF1 and TRF2 form distinct shelterin subcomplexes at telomeres.

bioRxiv

December 2024

Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing.

The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes . However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined.

View Article and Find Full Text PDF
Article Synopsis
  • Early life stress (ELS) is linked to adult mental disorders like PTSD, with varying effects based on gender and resilience factors.
  • The study investigated emotional and cognitive behaviors in rats subjected to different durations of maternal separation (MS) and subsequent prolonged stress (SPS) in adulthood, noting anxiety, depression, and memory deficits.
  • Key findings showed that maternal separation affects behaviors differently based on stress exposure duration, with observed changes in telomere length and protein expression that could relate to mechanisms of PTSD.
View Article and Find Full Text PDF

Telomere maintenance and the DNA damage response: a paradoxical alliance.

Front Cell Dev Biol

October 2024

Cell Biology Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.

Telomeres are the protective caps at the ends of linear chromosomes of eukaryotic organisms. Telomere binding proteins, including the six components of the complex known as shelterin, mediate the protective function of telomeres. They do this by suppressing many arms of the canonical DNA damage response, thereby preventing inappropriate fusion, resection and recombination of telomeres.

View Article and Find Full Text PDF

Low-power red laser and blue LED modulate telomere maintenance and length in human breast cancer cells.

Lasers Med Sci

October 2024

Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil.

Cancer cells have the ability to undergo an unlimited number of cell divisions, which gives them immortality. Thus, the cancer cell can extend the length of its telomeres, allowing these cells to divide unlimitedly and avoid entering the state of senescence or cellular apoptosis. One of the main effects of photobiomodulation (PBM) is the increase in the production of adenosine triphosphate (ATP) and free radicals, mainly reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!