The structure of the 2A proteinase from a common cold virus: a proteinase responsible for the shut-off of host-cell protein synthesis.

EMBO J

MRC Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7.

Published: October 1999

The crystal structure of the 2A proteinase from human rhinovirus serotype 2 (HRV2-2A(pro)) has been solved to 1.95 A resolution. The structure has an unusual, although chymotrypsin-related, fold comprising a unique four-stranded beta sheet as the N-terminal domain and a six-stranded beta barrel as the C-terminal domain. A tightly bound zinc ion, essential for the stability of HRV2-2A(pro), is tetrahedrally coordinated by three cysteine sulfurs and one histidine nitrogen. The active site consists of a catalytic triad formed by His18, Asp35 and Cys106. Asp35 is additionally involved in an extensive hydrogen-bonding network. Modelling studies reveal a substrate-induced fit that explains the specificity of the subsites S4, S2, S1 and S1'. The structure of HRV2-2A(pro) suggests the mechanism of the cis cleavage and its release from the polyprotein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171615PMC
http://dx.doi.org/10.1093/emboj/18.20.5463DOI Listing

Publication Analysis

Top Keywords

structure proteinase
8
structure
4
proteinase common
4
common cold
4
cold virus
4
virus proteinase
4
proteinase responsible
4
responsible shut-off
4
shut-off host-cell
4
host-cell protein
4

Similar Publications

ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.

View Article and Find Full Text PDF

Ubiquitin-conjugating enzymes (E2s) are key for protein turnover and quality control via ubiquitination. Some E2s also physically interact with the proteasome, but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation.

View Article and Find Full Text PDF

Characterization of the host specificity of the SH3 cell wall binding domain of the staphylococcal phage 88 endolysin.

Arch Microbiol

January 2025

Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.

Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD).

View Article and Find Full Text PDF

The growing incidence of infections caused by antibiotic-resistant strains of pathogens is one of the key challenges of the 21 century. The development of novel technological platforms based on single-cell analysis of antibacterial activity at the whole-microbiome level enables the transition to massive screening of antimicrobial agents with various mechanisms of action. The microbiome of wild animals remains largely underinvestigated.

View Article and Find Full Text PDF

The cysteine/arginine (Cys/Arg) branch of the N-degron pathway controls the stability of certain proteins with methionine (Met)-Cys N-termini, initiated by Met cleavage and Cys oxidation. In seeding plants, target proteins include the Group VII Ethylene Response Factors, which initiate adaptive responses to low oxygen (hypoxic) stress, as well as Vernalization 2 (VRN2) and Little Zipper 2 (ZPR2), which are involved in responses to endogenous developmental hypoxia. It is essential that these target proteins are only degraded by the N-degron pathway under the appropriate physiological conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!