Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intracellular free amino acids were measured in the abdominal muscle of the three larval instars, postlarvae, and juveniles of the lobster Homarus gammarus, acclimated to seawater (35 per thousand) and to a dilute medium (22 per thousand), to study intracellular isosmotic regulation throughout the development of this species. Transfer to low salinity was followed by a highly significant drop of free amino acids level in all developmental stages. The main regulated amino acids were glycine, proline, and alanine. The level of regulation of total free amino acids changed at metamorphosis: the decrease in total free amino acids at low salinity was 46% in the three larval instars, but it was only 29% in postlarvae and 20% in juveniles. These results suggest that free amino acids, mainly glycine, proline, and alanine, are involved in intracellular isosmotic regulation in the lobster, with different levels of involvement in pre- and postmetamorphic stages. The ontogenetic changes in intracellular isosmotic regulation are discussed in relation to the changes in extracellular regulation (osmoregulation) in the lobster.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/316692 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!