Antioxidant properties of aminoguanidine.

Fundam Clin Pharmacol

LPPCE, Facultés de Médecine et Pharmacie, Dijon, France.

Published: November 1999

It is well known that aminoguanidine (AG) can diminish advanced glycosylation of proteins, which might be beneficial in preventing chronic diabetic complications. Recent reports suggested an inter-relationship between glycosylation of protein and free radical damage. In the present study, we examined the free radical scavenging properties of AG. Electron paramagnetic resonance using the spin-trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was performed to determine the superoxide and hydroxyl radical scavenging abilities of AG. These experiments revealed that AG was an effective hydroxyl radical scavenger even though it expressed a direct inhibitory effect on the xanthine oxidase activity at high concentrations (AG > or = 5 mM). In the second part of the study, allophycocyanin was used as an indicator of free radical mediated protein damage. In the assay, 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) was used as a peroxyl radical generator, and the loss of allophycocyanin fluorescence was monitored. The antioxidant effect of AG was expressed in oxygen-radical absorbing capacity (ORAC), where one ORAC unit equals the net protection produced by 1 microM Trolox (a water soluble analogue of vitamin E) as a control standard. AG exhibited a significant dose-dependent effect against free radical damage. These radical scavenging properties of AG may contribute to protective effects during glycation and explain the prevention of diabetic complications.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1472-8206.1999.tb00358.xDOI Listing

Publication Analysis

Top Keywords

free radical
16
radical scavenging
12
diabetic complications
8
radical
8
radical damage
8
scavenging properties
8
hydroxyl radical
8
antioxidant properties
4
properties aminoguanidine
4
aminoguanidine well
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!