Rates of sugar uptake by guard cell protoplasts of pisum sativum L. Related To the solute requirement for stomatal opening.

Plant Physiol

Albrecht-von-Haller-Institut fur Pflanzenwissenschaften, Universitat Gottingen, Untere Karspule 2, 37073 Gottingen, Germany.

Published: October 1999

We wished to determine whether the capacity of the sugar uptake mechanisms of guard cells of the Argenteum mutant of pea (Pisum sativum L.) sufficed to support a concurrent stomatal opening movement. Sugar uptake by guard cell protoplasts was determined by silicone-oil-filtering centrifugation. The protoplasts took up [(14)C]glucose, [(14)C]fructose, and [(14)C]sucrose (Suc), apparently in symport with protons. Mannose, galactose, and fructose competed with Glc for transport by a presumed hexose carrier. The uptake of Glc saturated with a K(m) of 0.12 mM and a V(max) of 19 fmol cell(-1) h(-1). At external concentrations <1 mM, the uptake of Suc was slower than that of Glc. It exhibited a saturating component with a K(m) varying between 0.25 and 0.8 mM and a V(max) between 1 and 10 fmol cell(-1) h(-1), and at external concentrations >1 mM, a non-saturating component. At apoplastic sugar concentrations below 4 mM, sugar import was estimated to be mainly in the form of hexoses and too slow to support a simultaneous stomatal opening movement. If, however, during times of high photosynthesis and transpiration, the apoplastic Suc concentration rose and entered the range of non-saturating import, absorbed Suc could replace potassium malate as the osmoticum for the maintenance of stomatal opening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC59428PMC
http://dx.doi.org/10.1104/pp.121.2.647DOI Listing

Publication Analysis

Top Keywords

stomatal opening
16
sugar uptake
12
uptake guard
8
guard cell
8
cell protoplasts
8
pisum sativum
8
opening movement
8
rates sugar
4
uptake
4
protoplasts pisum
4

Similar Publications

Comprehensive Identification of Gene Family in Oliv. and Functional Analysis of in Drought Tolerance.

Int J Mol Sci

January 2025

Xinjiang Production & State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar 843300, China.

The transcription factors in the ABA Response Element Binding (AREB) protein family were differentially regulated under multiple stress conditions; however, functional analyses of AREB in Oliv. had not been conducted previously. In the present study, the comprehensive identification of the gene family and the function of in response to drought stress in were elucidated.

View Article and Find Full Text PDF

Phosphorylation of Arabidopsis NRT1.1 regulates plant stomatal aperture and drought resistance in low nitrate condition.

BMC Plant Biol

January 2025

MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Background: NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101).

View Article and Find Full Text PDF

Low phosphate (LP) availability significantly impacts crop yield and quality. PHOSPHATE STARVATION RESPONSE1 (PHR1) along with PHR1-like 1 (PHL1) act as a key transcriptional regulator in a plant's adaptive response to LP conditions. Abscisic acid (ABA) plays an important role in how plants respond to environmental stresses like salinity and drought.

View Article and Find Full Text PDF

Photosynthetic Induction Characteristics in Saplings of Four Sun-Demanding Trees and Shrubs.

Plants (Basel)

January 2025

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.

Light serves as the unique driving force of photosynthesis in plants, yet its intensity varies over time and space, leading to corresponding changes in the photosynthetic rate. Here, the photosynthetic induction response under constant and fluctuating light was examined in naturally occurring saplings of four sun-demanding woody species, . L.

View Article and Find Full Text PDF

BpMYB06 Acts as a Positive Regulatory Factor in Saline-alkaline Stress Resistance by Binding to Two Novel Elements.

Plant Cell Physiol

December 2024

The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.

Saline-alkaline salinity is recognized as one of the most severe abiotic stress factors, limiting plant growth and resulting in significant yield losses. MYB transcription factors (TFs) are crucial for plant tolerance to abiotic stress. However, the roles and regulatory mechanism of MYB TFs underlying saline-alkaline stress tolerance has not yet been investigated in Betula platyphylla.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!