Previous studies have suggested that 1) atypical protein kinase C (PKC) isoforms are required for insulin stimulation of glucose transport, and 2) 3-phosphoinositide-dependent protein kinase-1 (PDK-1) is required for activation of atypical PKCs. Presently, we evaluated the role of PDK-1, both in the activation of PKC-zeta, and the translocation of epitope-tagged glucose transporter 4 (GLUT4) to the plasma membrane, during insulin action in transiently transfected rat adipocytes. Overexpression of wild-type PDK-1 provoked increases in the activity of cotransfected hemagglutinin (HA)-tagged PKC-zeta and concomitantly enhanced HA-tagged GLUT4 translocation. Expression of both kinase-inactive PDK-1 and an activation-resistant form of PKC-zeta that is mutated at Thr-410, the immediate target of PDK-1 in the activation loop of PKC-zeta, inhibited insulin-induced increases in both HA-PKC-zeta activity and HA-GLUT4 translocation to the same extent as kinase-inactive PKC-zeta. Moreover, the inhibitory effects of kinase-inactive PDK-1 were fully reversed by cotransfection of wild-type PDK-1 and partly reversed by wild-type PKC-zeta, but not by wild-type PKB. In contrast to the T410A PKC-zeta mutant, an analogous double mutant of PKB (T308A/S473A) that is resistant to PDK-1 activation had only a small effect on insulin-stimulated HA-GLUT4 translocation and did not inhibit HA-GLUT4 translocation induced by overexpression of wild-type PDK-1. Our findings suggest that both PDK-1 and its downstream target, Thr-410 in the activation loop of PKC-zeta, are required for insulin-stimulated glucose transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/mend.13.10.0364 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!