Polycystic kidney diseases are genetic disorders in which the renal parenchyma is progressively replaced by fluid-filled cysts. Two members of the polycystin family (polycystin-1 and -2) are mutated in autosomal dominant polycystic kidney disease (ADPKD), and polycystin-L is deleted in mice with renal and retinal defects. Polycystins are membrane proteins that share significant sequence homology, especially polycystin-2 and -L (50% identity and 71% similarity). The functions of the polycystins remain unknown. Here we show that polycystin-L is a calcium-modulated nonselective cation channel that is permeable to sodium, potassium and calcium ions. Patch-clamp experiments revealed single-channel activity with a unitary conductance of 137 pS. Channel activity was substantially increased when either the extracellular or intracellular calcium-ion concentration was raised, indicating that polycystin-L may act as a transducer of calcium-mediated signalling in vivo. Its large single-channel conductance and regulation by calcium ions distinguish it from other structurally related cation channels.

Download full-text PDF

Source
http://dx.doi.org/10.1038/43907DOI Listing

Publication Analysis

Top Keywords

calcium ions
12
cation channel
8
channel permeable
8
polycystic kidney
8
polycystin-l
4
polycystin-l calcium-regulated
4
calcium-regulated cation
4
permeable calcium
4
ions polycystic
4
kidney diseases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!