We developed a homogeneous immunoassay method to eliminate false-positive amphetamine results caused by cross-reactive substances, including over-the-counter allergy and cold medications. This method uses a neutralizing antibody that binds to amphetamines but does not bind to the labeled amphetamine conjugate used in the assay. The amount of neutralizing antibody is sufficient to reduce the assay signal resulting from authentic amphetamine and methamphetamine, but not the signal resulting from cross-reactants. This concept was implemented using the CEDIA DAU Amphetamines assay on Hitachi 747 and 717 clinical chemistry analyzers. Urine samples were tested using the standard, unmodified reagents in one channel and reagents containing the neutralizing antibody in a second channel. The difference in rate between the two tests was calculated by the analyzer; true-positive samples showed a significantly greater decrease in assay signal in response to neutralizing antibody as compared with false-positive samples. The neutralization method was evaluated in two studies using 448 samples that tested positive in the initial CEDIA DAU Amphetamines screening test. The samples were separated into categories of 154 true-positive samples and 294 false-positive samples based upon a secondary screen with the Abbott FPIA Amphetamines assay followed by gas chromatography-mass spectrometry (GC-MS) testing using the HHS (SAMHSA) cutoff criteria. The CEDIA neutralization test successfully identified all 154 of the GC-MS confirmed positive samples. The test successfully identified as false positive 251 out of the 294 (85.4%) samples that failed to confirm by GC-MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jat/23.6.506 | DOI Listing |
PLoS Pathog
January 2025
Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.
Orthohantaviruses are emerging zoonotic viruses that can infect humans via the respiratory tract. There is an unmet need for an in vivo model to study infection of different orthohantaviruses in physiologically relevant tissue and to assess the efficacy of novel pan-orthohantavirus countermeasures. Here, we describe the use of a human lung xenograft mouse model to study the permissiveness for different orthohantavirus species and to assess its utility for preclinical testing of therapeutics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305.
Immunological interventions, like vaccinations, are enabled by the predictive control of humoral responses to novel antigens. While the development trajectories for many broadly neutralizing antibodies (bnAbs) have been measured, it is less established how human subtype-specific antibodies develop from their precursors. In this work, we evaluated the retrospective development trajectories for eight anti-SARS-CoV-2 Spike human antibodies (Abs).
View Article and Find Full Text PDFJ Virol
January 2025
Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Unlabelled: Porcine deltacoronavirus (PDCoV) is an enteric pathogen that burdens the global pig industry and is a public health concern. The development of effective antiviral therapies is necessary for the prevention and control of PDCoV, yet to date, there are few studies on the therapeutic potential of PDCoV-neutralizing antibodies. Here, we investigate the therapeutic potential of a novel monoclonal antibody (mAb 4A6) which targets the PDCoV S1 protein and effectively neutralizes PDCoV, both pre- and post-attachment on cells, with IC50 values of 0.
View Article and Find Full Text PDFJ Virol
January 2025
Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
Protein Sci
February 2025
Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, USA.
Engineered monoclonal antibodies have proven to be highly effective therapeutics in recent viral outbreaks. However, despite technical advancements, an ability to rapidly adapt or increase antibody affinity and by extension, therapeutic efficacy, has yet to be fully realized. We endeavored to stand-up such a pipeline using molecular modeling combined with experimental library screening to increase the affinity of F5, a monoclonal antibody with potent neutralizing activity against Venezuelan Equine Encephalitis Virus (VEEV), to recombinant VEEV (IAB) E1E2 antigen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!