Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein which acts primarily to stimulate the proliferation, differentiation and activation of committed progenitor cells of the neutrophil-granulocyte lineage into functionally mature neutrophils. The traditional biological assays employed to detect G-CSF are a myeloid bone marrow colony assay, a factor-dependent cell line specific for G-CSF and commercially available immunoassays. However, these methods will not distinguish between glycosylated and non-glycosylated forms of the molecule. In this study high-performance capillary electrophoresis (HPCE) was used to analyse glycosylated and non-glycosylated recombinant human granulocyte colony-stimulating factor (r-met-hG-CSF). Glycosylated G-CSF preparations contained human serum albumin (HSA), added as a protein carrier. Glycosylated and non-glycosylated G-CSFs were prepared in 40 mM Na2HPO4 buffer, pH 2.5, containing hydroxypropylmethylcellulose (HPMC) or 50 mM Na2HPO4 buffer, pH 9.0. Glycosylated G-CSF could be separated into two distinct glycoform populations at the lower pH studied. Differences in migration time and peak shape between glycosylated and non-glycosylated G-CSF were demonstrated. HPCE analysis of G-CSF produced using a baculovirus expression vector system revealed a further distinct G-CSF glycoform and demonstrated the resolving power of the technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-4347(99)00271-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!