The effects of static electromagnetic fields on the development of the chick embryo pineal gland were studied. A total of 144 fertilized White Leghorn eggs were sacrificed after 5, 10 and 15 days of incubation. The stage of development was determined in all embryos using the Hamburger and Hamilton method [J Morphol 49: 88-92, 1951]. The various morphometric parameters (diameter and distance of the pineal gland and its lumen) were measured on serial 7-micron-thick sections. The data were obtained in a morphometer and processed statistically. The intensities of the static electromagnetic fields were 18 and 36 mT. Control and exposed embryos were equally distributed and randomly assigned. After 5 days of incubation, 25% of embryos exposed to a static electromagnetic field of 18 mT had a more advanced stage of development than controls and embryos exposed to 36 mT. On the 10th and 15th day, embryos exposed to either 18 or 36 mT tended to be more developed than controls. In the morphometric study, results were similar for the controls and exposed embryos after 5 and 10 days of incubation. However, the values of the 15-day-old embryos exposed to static magnetic fields were lower than the values of the controls (p > 0.01). These differences were more pronounced in the embryos exposed to 36 mT. These results seem to indicate that static electromagnetic fields affect the development and growth of embryos unequally, and that their action can depend not only on the intensity of the static electromagnetic field, but also on the length of exposure and the organ which is developing. It may be interesting to use these data in ultrastructural and physiological studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000016677 | DOI Listing |
J Food Drug Anal
December 2024
Zhenjiang College, Zhenjiang, 212000, PR China.
Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.
Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.
View Article and Find Full Text PDFNat Commun
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Spinal Surgery, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, Zhejiang, 317500, China.
Mar Pollut Bull
December 2024
Department of Physics, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland.
The number of submarine cables in marine environment is increasing. Thus, marine organisms, especially benthic invertebrates are exposed to magnetic fields generated by those cables. The aim of the study was to determine the effect of static magnetic field (SMF) and electromagnetic field (EMF) on the behaviour and physiology of Rhithropanopeus harrisii during a series of laboratory experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!