We showed in a transient coexpression study that a single proline substitution for any of the five conserved leucine or isoleucine residues located in the envelope (Env) transmembrane protein gp41 zipper motif of the human immunodeficiency virus type 1 dominantly interferes with wild-type Env-mediated viral infectivity. In the present study, we intended to explore the feasibility of developing a genetic anti-HIV strategy targeting the zipper motif. Stable HeLa-CD4-LTR-beta-gal clones that harbored silent copies of Tat-regulated expression cassettes encoding the zipper motif Env mutants were first generated. Expression of any of the five Env mutants in transfectants interfered with exogenously expressed homologous HXB2 Env-mediated cytopathic effects. Mutant transfectants 566, 573, and 580 were further examined. Viral transmission mediated by the laboratory-adapted T cell-tropic HXB2 and NL4-3 viruses was greatly reduced in these transfectants compared with that observed in the env-defective control deltaKS and wt env transfectants. Moreover, viral replication mediated by the NL4-3 virus and a macrophage-tropic ADA-GG virus was delayed or reduced in human T cells harboring the mutant 566 or 580 env construct as opposed to those observed in cells harboring the control deltaKS or mutant 573 env construct. The wt and mutant Env proteins formed a hetero-oligomer when they were coexpressed. These results demonstrate that zipper motif Env mutants 566 and 580 confer an anti-HIV state to the host CD4+ cells, which indicates that dominant inhibitory mutants targeting the gp41 zipper motif might function as genetic anti-HIV agents to combat HIV-1 infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/10430349950017031 | DOI Listing |
J Exp Bot
January 2025
Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China.
The basic leucine zipper (bZIP) transcription factors play essential roles in multiple stress responses and have been identified and functionally characterized in many plant species. However, the bZIP family members in blueberry are unclear. In this study, we identified 102 genes in .
View Article and Find Full Text PDFPhysiol Plant
January 2025
Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
Salt stress disturbs plant growth and photosynthesis due to its toxicity. The ice plant Mesembryanthemum crystallinum is a highly salt-tolerant facultative crassulacean acid metabolism (CAM) plant. However, the genetic basis of the salt tolerance mechanisms in ice plants remains unclear.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China.
We identified a CXCXCPXC motif and 11 CLG genes that regulate epidermal development by interacting with homeodomain leucine-zipper IV family proteins in Arabidopsis. Zinc finger proteins (ZFPs), the key regulators of plant growth and development, can be categorized based on the sequence patterns of zinc finger motifs. Here, by aligning the amino acid sequences of CFL1, AtCFL1, AtCFL2, GIRl, and GIR2, we identified the CXCXCPXC motif in their C-terminus, which differs from all the previously characterized canonical zinc finger motifs.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of System Biology, Institute of Cytology and Genetics, Novosibirsk 630090, Russia.
Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!