The molecular neuron-glia couple and epileptogenesis.

Adv Neurol

Laboratory of Neurochemistry, University of Liège, Belgium.

Published: November 1999

Download full-text PDF

Source

Publication Analysis

Top Keywords

molecular neuron-glia
4
neuron-glia couple
4
couple epileptogenesis
4
molecular
1
couple
1
epileptogenesis
1

Similar Publications

CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions.

Neuron

January 2025

Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. Electronic address:

The complexity of the human brain makes it challenging to understand the molecular mechanisms underlying brain function. Genome-wide association studies have uncovered variants associated with neurological phenotypes. Single-cell transcriptomics have provided descriptions of changes brain cells undergo during disease.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.

View Article and Find Full Text PDF

Altered GnRH neuron-glia networks close to interface of polycystic ovary syndrome: Molecular mechanism and clinical perspectives.

Life Sci

January 2025

Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China; The Academy of Integrative Medicine, Fudan University, Shanghai 200081, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease, Shanghai 200081, China. Electronic address:

Polycystic ovary syndrome (PCOS) has been noticed as a neuroendocrine syndrome manifested by reproductive hormone dysregulation involving increased luteinizing hormone (LH) pulse frequency and an increased LH to follicle-stimulating hormone ratio, yet theory is just beginning to be established. Neuroglia located in the arcuate nucleus and median eminence (ARC-ME) that are close to gonadotropin-releasing hormone (GnRH) axon terminals, comprise the blood-brain barrier and fenestrated vessels implying their putative roles in the modulation of the abnormal GnRH pulse in PCOS. This review outlines the disturbances of neuron-glia networks that underlie hypothetically the deregulation of GnRH-LH release and impaired sex hormone negative feedback in PCOS.

View Article and Find Full Text PDF

(Re)building the nervous system: A review of neuron-glia interactions from development to disease.

J Neurochem

January 2025

Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Neuron-glia interactions are fundamental to the development and function of the nervous system. During development, glia, including astrocytes, microglia, and oligodendrocytes, influence neuronal differentiation and migration, synapse formation and refinement, and myelination. In the mature brain, glia are crucial for maintaining neural homeostasis, modulating synaptic activity, and supporting metabolic functions.

View Article and Find Full Text PDF

NMDA receptor blockade attenuates Japanese encephalitis virus infection-induced microglia activation.

J Neuroinflammation

November 2024

Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung City, 407, Taiwan.

Article Synopsis
  • Neurodegeneration and neuroinflammation play significant roles in Japanese Encephalitis virus (JEV) infection, with the NMDA receptor contributing to these processes through excitatory neurotoxicity and inflammation.
  • Research showed that JEV infection in rat microglia leads to glutamate release, activating harmful signaling pathways that result in pro-inflammatory responses and neurodegeneration.
  • NMDA receptor antagonists, such as MK801 and memantine, were found to reduce the harmful effects of JEV infection on microglia and neurons, indicating their potential as therapeutic options to mitigate neuroinflammation and cell death.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!