Angelman syndrome is an inherited disorder that includes severe mental retardation and epilepsy. Patients have no speech, puppet-like gait with jerky movements, hyperactivity, disturbed sleep, bouts of inappropriate laughter, a pronounced jaw, and widely spaced teeth. The syndrome results from deletion or mutation within maternal chromosome 15q11-q13. Considerable evidence suggests that the gene or genes responsible for Angelman syndrome are expressed only from the maternal chromosome 15, a situation known as parental imprinting. This epigenetic marking of certain regions of the parental genomes is characterized by parent-of-origin-specific allelic DNA methylation, allele-specific DNA replication timing, and physical pairing of the two chromosome 15 homologues. Imprinting is important for normal development, and its disregulation causes several human disorders. The epilepsy of Angelman syndrome has been studied and indicates a rather typical electroencephalographic abnormality with slowing and notched wave and spikes. Various types of seizures occur, usually including myoclonus and atypical absence. Variable severity among patients suggests potential molecular diversity in the genetic mechanism, possibly the involvement of more than one gene. Angelman syndrome can arise from the following molecular genetic defects: a deletion in 15q11-q13 that covers the Angelman gene or genes, mutations that alter imprinting, and paternal uni-parental disomy for the region. Another 20% or so of patients with clinical symptoms of Angelman syndrome have none of these three defects but are believed to have mutations in one or more genes in the region, and this may be familial. The UBE3A gene, which codes for the enzyme ubiquitin protein ligase involved in protein degradation and processing, has been found to be mutated in many but not all of patients with Angelman syndrome and can be considered a major Angelman candidate gene. Other potential candidate genes in the region include a cluster of three GABAA receptor subunits, which are involved in inhibitory synaptic transmission in the brain. The GABRB3 gene, which codes for the beta 3 subunit, is deleted in most persons with Angelman syndrome. The absence of this gene in mice causes craniofacial abnormalities and neurologic impairment with seizures. The exact role of UBE3A and GABRB3 in the syndrome and their imprinting status are under investigation.
Download full-text PDF |
Source |
---|
Chembiochem
January 2025
University of Konstanz, Department of Chemistry, Universitaetsstrasse 10, 78457, Konstanz, GERMANY.
The ubiquitin (Ub) ligase E6AP, which is encoded by the UBE3A gene, has been associated with several human diseases including cervical cancer and Angelman syndrome, a neurodevelopmental disorder. Yet, our knowledge about disease-relevant substrates of E6AP is still limited. The formation of a thioester complex between Ub and the catalytic Cys residue of E6AP represents an essential intermediate step in E6AP-mediated ubiquitination.
View Article and Find Full Text PDFAm J Med Genet A
January 2025
Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Gait disturbance is a common motor symptom in Angelman syndrome (AS), but its characteristics have been poorly studied quantitatively. This study aimed to analyze gait characteristics in school-age children with AS using three-dimensional gait analysis (3DGA). Patients with clinically and genetically confirmed AS and healthy children aged 6-15 years were included.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Laboratório de Citogenética Clínica, Centro de Genética Médica, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil.
Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births.
View Article and Find Full Text PDFJ Mol Diagn
January 2025
Department of Laboratory Medicine and Pathology, University of Washington and Seattle Children's Hospital, Seattle, Washington; Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington. Electronic address:
J Biol Chem
December 2024
Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!