Mutants unable to grow on medium containing glutathione as a sole source of sulphur (GSH medium) were isolated from Saccharomyces cerevisiae strains carrying met17(deficiency of O-acetylserine and O-acetylhomoserine sulphydrylase). They were defective in the high-affinity glutathione transport system, GSH-P1. Newly acquired mutations belonged to the same complementation group, gsh11. However, it became apparent that gsh11 conferred the mutant phenotype not by itself but in collaboration with met17. Moreover, mutations conferring the defect in sulphate assimilation made the cell unable to grow on GSH medium in collaboration with gsh11. From this finding, we propose that the sulphate assimilation pathway acts as a sulphur-recycling system and that this function is especially vital to the cell when the supply of glutathione is limited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1097-0061(199910)15:14<1449::AID-YEA469>3.0.CO;2-S | DOI Listing |
PLoS One
January 2025
Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Exophiala spinifera strain FM, a black yeast and melanized ascomycete, shows potential for oil biodesulfurization by utilizing dibenzothiophene (DBT) as its sole sulfur source. However, the specific pathway and enzymes involved in this process remain unclear due to limited genome sequencing and metabolic understanding of E. spinifera.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
Aim: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination.
Methods And Results: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains, and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.
J Exp Bot
January 2025
Normandie Univ, UNICAEN, INRAe, UMR 950 Ecophysiologie Végétale, Agronomie & nutritions NCS, SFR Normandie Végétal (FED4277), 14032 Caen CEDEX 05, France.
The response of oilseed rape to sulfur (S) restriction usually consists of increasing the components of S utilization efficiency (absorption, assimilation and remobilization) to provide S to seeds. However, source-sink relationships and S management in developing seeds under sulfate restriction are poorly understood. To address this, impacts of sulfate restrictions applied at "visible bud" or "start of pod filling" stages were studied with two genotypes (Aviso, Capitol) showing similar seed yield but higher seed weight and lower number of seeds per plant for Capitol under non-limited conditions.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, 3460000, Chile.
In the present study, the taxonomic position of Salinisphaera halophila (NZ_AYKF00000000) and Salinisphaera orenii (NZ_AYKH00000000) was re-evaluated. In addition, their metabolic potentials and mechanisms for mitigating stress conditions were determined. Comparisons of 16S rRNA gene sequences, analysis of the phylogenetic tree, phylogenomic tree, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH) values were conducted.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India. Electronic address:
Heavy metalloid stress such as arsenic (As) toxicity and nutrient imbalance constitute a significant threat to plant productivity and development. Plants produce sulfur (S)-rich molecules like glutathione (GSH) to detoxify arsenic, but sulfur deficiency worsens its impact. Previous research identified Arabidopsis thaliana ecotypes Koz2-2 (tolerant) and Ri-0 (sensitive) under low-sulfur (LS) and As(III) stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!