We have previously shown that the expression of alpha(5)beta(1) integrin on the cell surface is dependent upon cell adhesion to the extracellular matrix, and we report here that transforming growth factor-beta (TGF-beta) overcomes this requirement in normal rat kidney (NRK) fibroblasts. Thus, suspended NRK cells treated with TGF-beta show levels of surface alpha(5)beta(1) integrin that are equivalent to those seen in adherent cells. Moreover, several experiments showed that this effect is necessary for the induction of anchorage-independent growth by TGF-beta. First, a kinetic analysis showed that surface expression of alpha(5)beta(1) integrin was restored in TGF-beta-treated NRK cells prior to the induction of anchorage-independent growth. Second, NRK cell mutants that have lost their TGF-beta requirement for surface expression of alpha(5)beta(1) integrin were anchorage-independent in the absence of TGF-beta. Third, an antisense oligonucleotide to the beta(1) integrin subunit or, fourth, stable expression of an alpha(5)-antisense cDNA blocked the ability of TGF-beta to stimulate anchorage-independent growth. Thus, TGF-beta overrides the adhesion requirement for surface expression of alpha(5)beta(1) integrin in NRK cells, and this effect is necessary for the induction of anchorage-independent growth.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.42.30139DOI Listing

Publication Analysis

Top Keywords

alpha5beta1 integrin
24
expression alpha5beta1
20
anchorage-independent growth
20
surface expression
16
induction anchorage-independent
16
requirement surface
12
nrk cells
12
transforming growth
8
growth factor-beta
8
overrides adhesion
8

Similar Publications

Integrins are a large family of heterodimeric receptors important for cell adhesion and signaling. Integrin α5β1, also known as the fibronectin receptor, is a key mediator of angiogenesis and its dysregulation is associated with tumor proliferation, progression, and metastasis. Despite numerous efforts, α5β1-targeting therapeutics have been unsuccessful in large part due to efficacy and off-target effects.

View Article and Find Full Text PDF

Exploring Integrin α5β1 as a Potential Therapeutic Target for Pulmonary Arterial Hypertension: Insights From Comprehensive Multicenter Preclinical Studies.

Circulation

January 2025

Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Center, Quebec City, QC, Canada (S.-E.L., Y.G., T.Y., T.S., M.M., C.R., M.S., S.B.-B., A.B., C.T., A.P., R.E.K., S.M., K.Y., F.P., S.P., O.B., S.B.).

Background: Pulmonary arterial hypertension (PAH) is characterized by obliterative vascular remodeling of the small pulmonary arteries (PAs) and progressive increase in pulmonary vascular resistance leading to right ventricular failure. Although several drugs are approved for the treatment of PAH, mortality rates remain high. Accumulating evidence supports a pathological function of integrins in vessel remodeling, which are gaining renewed interest as drug targets.

View Article and Find Full Text PDF

Background: Programmed cell death ligand 1 (PD-L1) expression on immune cells is correlated with the efficacy of immune checkpoint inhibitor (ICI) therapy in various types of cancer. Platelets are important components of the tumour microenvironment (TME) and are widely involved in the development of many types of cancer including colorectal cancer (CRC). However, the role of PD-L1 positive platelets in ICI therapy for CRC remains unknown.

View Article and Find Full Text PDF

Atherosclerotic lesions develop preferentially in arterial regions exposed to disturbed blood flow, where endothelial cells acquire an inflammatory phenotype. How disturbed flow induces endothelial cell inflammation is incompletely understood. Here we show that histone H3.

View Article and Find Full Text PDF

Low back pain (LBP) caused by nucleus pulposus degeneration and calcification leads to great economic and social burden worldwide. Unexpectedly, no previous studies have demonstrated the association and the underlying mechanism between nucleus pulposus tissue degeneration and calcification formation. Secreted Phosphoprotein 1 (SPP1) exerts crucial functions in bone matrix mineralization and calcium deposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!