We have reported previously that phospholipase D1 (PLD1) is labeled specifically with [(3)H]palmitate following transient expression and immunoprecipitation and that this modification appeared important both for membrane localization and catalytic activity. In this work we identify by mutagenesis that the acylation sites on PLD1 are cysteine residues 240 and 241, with the cysteine at position 241 accounting for most but not all of the modification. Replacement of both cysteine residues with either serines or alanines resulted in a mutant protein that contained undetectable [(3)H]palmitate. In comparison with the wild type protein, the double mutant showed reduced catalytic activity in vivo, whereas its activity in vitro was unchanged. In addition, the localization of the double mutant was altered in comparison with the wild type protein, whereas wild type PLD1 is primarily on intracellular membranes and on punctate structures, the double mutant was on plasma membrane. Because cysteines 240 and 241 lie within a putative pleckstrin homology domain of PLD1, it is likely that fatty acylation on these residues modulates the function of the PLD1 pleckstrin homology domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.274.42.30023 | DOI Listing |
Commun Chem
January 2025
School of Chemistry, Trinity College Dublin, Dublin, Ireland.
The thiol-ene reaction between an alkene and a thiol can be exploited for selective labelling of cysteine residues in protein profiling applications. Here, we explore thiol-ene activation in systems from chemical models to complex cellular milieus, using UV, visible wavelength and redox initiators. Initial studies in chemical models required an oxygen-free environment for efficient coupling and showed very poor activation when using a redox initiator.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany. Electronic address:
Minocycline is an antibiotic of the tetracycline family which is widely used to treat a range of medical conditions. Although it has been in use for more than 50 years, little information is available on its metabolism in the human body. In this study, we simulate the biotransformation of minocycline by means of electrochemistry coupled to mass spectrometry.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
1-Aminocyclopropane-1-carboxylate synthase (ACCS) catalyzes the conversion of S-adenosyl-methionine to 1-aminocyclopropane-1-carboxylate (ACC), a rate-limiting step in ethylene biosynthesis. A gene encoding a putative ACCS protein was identified in the human genome two decades ago. It has been shown to not exhibit any canonical ACC synthase activity and its true function remains obscure.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.
The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.
Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!