Two distinct mechanisms control the accumulation of cyclin B1 and Mos in Xenopus oocytes in response to progesterone.

Mol Biol Cell

Laboratoire de Physiologie de la Reproduction, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Paris 05, France.

Published: October 1999

Progesterone-induced meiotic maturation of Xenopus oocytes requires the synthesis of new proteins, such as Mos and cyclin B. Synthesis of Mos is thought to be necessary and sufficient for meiotic maturation; however, it has recently been proposed that newly synthesized proteins binding to p34(cdc2) could be involved in a signaling pathway that triggers the activation of maturation-promoting factor. We focused our attention on cyclin B proteins because they are synthesized in response to progesterone, they bind to p34(cdc2), and their microinjection into resting oocytes induces meiotic maturation. We investigated cyclin B accumulation in response to progesterone in the absence of maturation-promoting factor-induced feedback. We report here that the cdk inhibitor p21(cip1), when microinjected into immature Xenopus oocytes, blocks germinal vesicle breakdown induced by progesterone, by maturation-promoting factor transfer, or by injection of okadaic acid. After microinjection of p21(cip1), progesterone fails to induce the activation of MAPK or p34(cdc2), and Mos does not accumulate. In contrast, the level of cyclin B1 increases normally in a manner dependent on down-regulation of cAMP-dependent protein kinase but independent of cap-ribose methylation of mRNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC25591PMC
http://dx.doi.org/10.1091/mbc.10.10.3279DOI Listing

Publication Analysis

Top Keywords

xenopus oocytes
12
response progesterone
12
meiotic maturation
12
maturation-promoting factor
8
cyclin
5
progesterone
5
distinct mechanisms
4
mechanisms control
4
control accumulation
4
accumulation cyclin
4

Similar Publications

Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term exposure to low levels of CPF is associated with neurodevelopmental and neurodegenerative disorders. The mechanisms leading to these effects are still not fully understood.

View Article and Find Full Text PDF

SLC17A3 localized to the apical membrane of the renal proximal tubules has been implicated in the urinary excretion of drugs and endogenous/exogenous metabolites transported into the tubules by OAT1 and OAT3. Because SLC17A3 mediates the facilitated diffusion of organic anions, which requires a sensitive and rapid assay, no system has been established to evaluate its transport activity in mammalian cells. In this study, we demonstrated that the exposure of cells expressing click beetle luciferase (bLuc) and SLC17A3 to D-luciferin produces marked bioluminescence, which enables the evaluation of SLC17A3 function.

View Article and Find Full Text PDF

Background And Purpose: The antiepileptic drug ethosuximide (ETX) suppresses epileptiform activity in a mouse model of GNB1 syndrome, caused by mutations in Gβ protein, likely through the inhibition of G-protein gated K (GIRK) channels. Here, we investigated the mechanism of ETX inhibition (block) of different GIRKs.

Experimental Approach: We studied ETX inhibition of GIRK channels expressed in Xenopus oocytes with or without their physiological activator, the G protein subunit dimer Gβγ.

View Article and Find Full Text PDF

The stoichiometry of the α4β2 neuronal nicotinic acetylcholine receptors determines the pharmacological properties of the neonicotinoids, and recently introduced butenolide and sulfoximine.

Neurotoxicology

January 2025

Laboratoire Physiologie, Ecologie et Environnement (P2E), Université d'Orléans, UR 1207, USC-INRAE 1328, 1 rue de Chartres, Orléans 45067, France; Institut Universitaire de France (IUF), 1 rue Descartes, Paris 75005, France. Electronic address:

Although neonicotinoids were considered safe for mammals for many decades, recent research has proven that these insecticides can alter cholinergic functions by interacting with neuronal nicotinic acetylcholine (ACh) receptors (nAChRs). One such receptor is the heteromeric α4β2 nAChR, which exists under two different stoichiometries: high sensitivity and low sensitivity α4β2 nAChRs. To replace these insecticides, new classes of insecticides have been developed, such as, sulfoximine, sulfoxaflor, and the butenolide, flupyradifurone.

View Article and Find Full Text PDF

Human α10 nicotinic acetylcholine receptor subunits assemble to form functional receptors.

J Biol Chem

January 2025

School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA; Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. In mammals, there are 16 individual nAChR subunits allowing for numerous possible heteromeric compositions. nAChRs assembled from α7 or α9 subunits will form as homopentamers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!