Sensory rhodopsin II (SRII) in Halobacterium salinarum membranes is a phototaxis receptor that signals through its bound transducer HtrII for avoidance of blue-green light. In the present study we investigated the proton movements during the photocycle of SRII in the HtrII-free and HtrII-complexed form. We monitored sustained light-induced pH changes with a pH electrode, and laser flash-induced pH changes with the pH indicator pyranine using sealed membrane vesicles and open sheets containing the free or the complexed receptor. The results demonstrated that SRII takes up a proton in M-to-O conversion and releases it during O-decay. The uptake and release are from and to the extracellular side, and therefore SRII does not transport the proton across the membrane. The pH dependence of the SRII photocycle indicated the presence of a protonatable group (pK(a) approximately 7.5) in the extracellular proton-conducting path, which plays a role in proton uptake by the Schiff base in the M-to-O conversion. The extracellular proton circulation produced by SRII was not blocked by HtrII complexation, unlike the cytoplasmic proton conduction in SRI that was found in the same series of measurements to be blocked by its transducer, HtrI. The implications of this finding for current models of SRI and SRII signaling are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1300495 | PMC |
http://dx.doi.org/10.1016/S0006-3495(99)77055-4 | DOI Listing |
EJNMMI Radiopharm Chem
January 2025
Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, 171 76, Sweden.
Background: Beyond the use of conventional short-lived PET radionuclides, there is a growing interest in tracking larger biomolecules and exploring radiotheranostic applications. One promising option for imaging medium-sized molecules and peptides is ⁵⁵Co (T₁/₂ = 17.5 h, β⁺ = 76%), which enables imaging of new and already established tracers with blood circulation of several hours.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max Planck Str. 1, 21502, Geesthacht, Germany.
This work proposes a fuel cell power supply system for underwater applications (e.g., autonomous underwater vehicles), where artificial gills, based on a polymer membrane, harvest the required oxygen from the ambient water.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Radiation Oncology, Rutgers Cancer Institute, New Brunswick, NJ 08901, USA.
Unresectable stage III non-small-cell lung cancer (NSCLC) remains a clinical challenge, due to the need for optimal local and systemic control. The management of unresectable Stage III NSCLC has evolved with advancements in radiation therapy (RT), systemic therapies, and immunotherapy. For patients with locally advanced NSCLC who are not surgical candidates, concurrent chemoradiotherapy (CRT) has modest survival outcomes, due to both local progression and distant metastasis.
View Article and Find Full Text PDFCirculation
December 2024
Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, China. (L.Z., X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.).
Background: Mitochondrial dysfunction is a key factor in the development of atherogenesis. METTL4 (methyltransferase-like protein 4) mediates N6- methyldeoxyadenosine (6mA) of mammalian mitochondrial DNA (mtDNA). However, the role of METTL4-mediated mitoepigenetic regulation in atherosclerosis is still unknown.
View Article and Find Full Text PDFChem Sci
January 2025
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
The singlet oxygen carrier addresses the challenges of traditional photodynamic therapy (PDT), which relies on the presence of oxygen within solid tumors and struggles with light penetration issues. However, the inability to control the release of singlet oxygen has hindered precise treatment applications. Here, we introduce an acid-responsive singlet oxygen nanodepot (aSOND) designed to overcome this limitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!