Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.

Download full-text PDF

Source
http://dx.doi.org/10.1038/13810DOI Listing

Publication Analysis

Top Keywords

rtt
9
rett syndrome
8
mecp2 encoding
8
methyl-cpg-binding protein
8
syndrome caused
4
mutations
4
caused mutations
4
mutations x-linked
4
mecp2
4
x-linked mecp2
4

Similar Publications

Background And Purpose: This study assessed the treatment time of online adaptive (i.e. Adapt-to-Shape, ATS) and virtual couch shift (i.

View Article and Find Full Text PDF

Background: Preclinical studies and anecdotal case reports support the potential therapeutic benefit of low-dose oral ketamine as a treatment of clinical symptoms in Rett syndrome (RTT); however, no controlled studies have been conducted in RTT to evaluate safety, tolerability and efficacy.

Design: This was a sequentially initiated, dose-escalating cohort, placebo-controlled, double blind, randomized sequence, cross-over study of oral ketamine in 6-12-year-old girls with RTT to evaluate short-term safety and tolerability and explore efficacy.

Methods: Participants were randomized to either five days treatment with oral ketamine or matched placebo, followed by a nine-day wash-out period and then crossed-over to the opposite treatment.

View Article and Find Full Text PDF

This study investigates whether an Image-Guided Radiation Therapy (IGRT) workbook and Cone Beam Computed Tomography (CBCT) case studies enhances Radiation Therapists' (RTTs) confidence analysing Proton Beam Therapy (PBT) CBCTs. An 11-participant questionnaire-based study was conducted to assess pre- and post-training confidence. Prior to training, RTTs exhibited higher confidence in photon CBCT decision-making over proton CBCT, highlighting the need for PBT-specific IGRT training, irrespective of prior photon experience.

View Article and Find Full Text PDF

Mutations of the MECP2 gene lead to Rett syndrome (RTT), a rare developmental disease causing severe intellectual and physical disability. How the loss or defective function of MeCP2 mediates RTT is still poorly understood. MeCP2 is a global gene expression regulator, acting at transcriptional and post-transcriptional levels.

View Article and Find Full Text PDF

Comprehensive assessment reveals numerous clinical and neurophysiological differences between MECP2-allelic disorders.

Ann Clin Transl Neurol

January 2025

Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA.

Objective: Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) result from under- and overexpression of MECP2, respectively. Preclinical studies using genetic-based treatment showed robust phenotype recovery for both MDS and RTT. However, there is a risk of converting MDS to RTT, or vice versa, if accurate MeCP2 levels are not achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!