The cellular prion protein (PrP(C)) is crucial for the development of transmissible spongiform encephalopathies (TSEs), where the pathogenic scrapie isoform (PrP(Sc)) of the same protein, is considered to be the principal or sole infectious agent. Here, we report findings on PrP(C) expression in the rat forebrain, using immunohistochemical techniques on free floating sections of 60 microm thickness. Along with neurons and astrocytes in the gray matter, PrP(c) was detected for the first time in glial cells of the white matter and in cells of circumventricular organs. PrP(C) positive cellular processes were also found to be closely associated with intraparenchymal blood vessels, often in the form of end feet. Interestingly, PrP(C) expression was observed in areas where PrP(Sc) deposition in late stages of infection has been earlier reported in the rat and other species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3940(99)00563-7DOI Listing

Publication Analysis

Top Keywords

prion protein
8
prpc expression
8
prpc
5
expression prion
4
protein rat
4
rat forebrain--an
4
forebrain--an immunohistochemical
4
immunohistochemical study
4
study cellular
4
cellular prion
4

Similar Publications

Prion diseases, including Creutzfeldt-Jakob disease (CJD), are deadly neurodegenerative disorders characterized by the buildup of abnormal prion proteins in the brain. This accumulation disrupts neuronal functions, leading to the rapid onset of psychiatric symptoms, ataxia, and cognitive decline. The urgency of timely diagnosis for effective treatment necessitates the identification of strongly correlated biomarkers in bodily fluids, which makes our research crucial.

View Article and Find Full Text PDF

Identification of the Highly Polymorphic Prion Protein Gene () in Frogs ).

Animals (Basel)

January 2025

Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea.

Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPs, encoded by the endogenous prion protein gene (). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the gene have not been investigated.

View Article and Find Full Text PDF

α-Synucleinopathies constitute a spectrum of neurodegenerative disorders, including Parkinson's disease (PD), Lewy body dementia (LBD), Multiple System Atrophy (MSA), and Alzheimer's disease concurrent with LBD (AD-LBD). These disorders are unified by a pathological hallmark: aberrant misfolding and accumulation of α-synuclein (α-syn). This review delves into the pivotal role of α-syn, the key agent in α-synucleinopathy pathophysiology, and provides a survey of potential therapeutics that target cell-to-cell spread of pathologic α-syn.

View Article and Find Full Text PDF

Prion protein modulation of virus-specific T cell differentiation and function during acute viral infection.

Immunohorizons

January 2025

Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States.

The differentiation and functionality of virus-specific T cells during acute viral infections are crucial for establishing long-term protective immunity. While numerous molecular regulators impacting T cell responses have been uncovered, the role of cellular prion proteins (PrPc) remains underexplored. Here, we investigated the impact of PrPc deficiency on the differentiation and function of virus-specific T cells using the lymphocytic choriomeningitis virus (LCMV) Armstrong acute infection model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!