Characterization of a monoclonal anti-porcine CD3 antibody.

Xenotransplantation

Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston 02129, USA.

Published: August 1999

Partially inbred miniature swine have been developed in this laboratory as a large animal model for studies related to transplantation tolerance and as a source of hematopoietic cells and organs for xenotransplantation. The identification of swine CD3 specific mAbs capable of activating or depleting T cells in vitro and inducing an immunosuppressive state in vivo greatly facilitates studies of the swine immune system, transplantation tolerance and xenotransplantation research. Flow cytometry was used to determine the phenotypic profile of the swine specific mAb 898H2-6-15 (2-6-15). The specificity of 2-6-15 was further defined biochemically by surface labeling and immunoprecipitation. The ability of this mAb to activate pig T cells in vitro was examined by several criteria including proliferation assays, calcium flux analysis and detection of surface CD25 upregulation by fluorescence activated cell sorter (FACS) analysis. Monoclonal antibody 898H2-6-15 is specific for swine CD3 and is capable of inducing proliferation and CD25 upregulation in cultured swine peripheral blood lymphocytes. In addition, it induces calcium flux in purified pig T cells. Surprisingly, in contrast to described antibodies to CD3 in swine and other species, the binding of this antibody to porcine CD3 is dependent on the presence of extracellular calcium. Thus calcium was required in order to immunoprecipitate labeled surface molecules for biochemical analysis and to stain cell surfaces for FACS analysis of swine lymphocytes. In this paper, we describe a new swine CD3 specific mAb, 898H2-6-15 (2-6-15) the characteristics of which make it an extremely useful tool for in vitro and in vivo studies of the swine immune system and xenotransplantation. The availability of swine T cell specific reagents should facilitate the monitoring of swine T cell engraftment and/or release amongst xenogeneic mixed chimeras and thymic transplant recipients as well as provide a means to treat potential GvHD across xenogeneic barriers. We are currently evaluating the in vivo effects of 2-6-15 in the pig.

Download full-text PDF

Source
http://dx.doi.org/10.1034/j.1399-3089.1999.00022.xDOI Listing

Publication Analysis

Top Keywords

swine
12
swine cd3
12
transplantation tolerance
8
cd3 specific
8
cells vitro
8
studies swine
8
swine immune
8
immune system
8
specific mab
8
mab 898h2-6-15
8

Similar Publications

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine coronavirus that was recently identified in southern China in 2017. At present, there is a lack of nationwide epidemiological investigations of the newly emerged SADS-CoV. Because Vietnam is geographically adjacent to southern China, many diseases have spread from China to Vietnam.

View Article and Find Full Text PDF

Interplay of swine acute diarrhoea syndrome coronavirus and the host intrinsic and innate immunity.

Vet Res

January 2025

Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity.

View Article and Find Full Text PDF

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

The Wannan black pig is a superior local breed in Anhui province, renowned for its exceptional meat quality and remarkable adaptability to various environmental conditions. Semen, being a crucial indicator of male sexual maturity and fertility, significantly influences the performance of breeding boars. The molecular basis for comprehending the fecundity of boars in practical production lies in understanding the disparities in sperm proteins among boars of varying ages.

View Article and Find Full Text PDF

Catheter-based pulmonary artery denervation (PADN) has achieved promising outcomes to treat pulmonary hypertension (PH). We herein present stereotactic body radiotherapy (SBRT) as a novel noninvasive approach for PADN. A single fraction of 15 Gy, 20 Gy or 25 Gy was delivered for PADN in a thromboxane A2 (TxA2) - induced acute PH swine model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!