A three-dimensional cerebrovascular flow phantom.

Med Phys

Department of Medical Biophysics, University of Western Ontario, London Health Sciences Centre and The J. P. Robarts Research Institute, Canada.

Published: August 1999

We have constructed a life-sized fully three-dimensional (3D) rigid flow-through model of the cerebral vasculature. Average vessel diameters and lengths, taken from published values in the literature, were used to describe the geometry of our phantom; numerically controlled machining techniques were used to fabricate the model. Inflow to the phantom is provided through two internal carotid arteries and two vertebral arteries. Outflow is provided through the anterior cerebral arteries, the middle cerebral arteries, and the posterior cerebral arteries. The phantom includes the circle of Willis, and aneurysms of variable size may be attached at different locations. We have tested the model for geometric accuracy using high-resolution MR and CT imaging protocols, and have found that measured and prescribed diameters agree to within better than 4%. Flow dynamics, including waveform shape and flow division between branches, also mimic that seen in vivo, with flows within 16% (on average) of the prescribed values. We present 3D magnetic resonance angiography, digital subtraction angiography, and computed rotational angiography images of the phantom under conditions that mimic physiological situations.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.598672DOI Listing

Publication Analysis

Top Keywords

cerebral arteries
12
phantom
5
arteries
5
three-dimensional cerebrovascular
4
cerebrovascular flow
4
flow phantom
4
phantom constructed
4
constructed life-sized
4
life-sized fully
4
fully three-dimensional
4

Similar Publications

Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.

View Article and Find Full Text PDF

Objective: To assess whether intra-arterial tenecteplase administered after successful endovascular recanalisation improves outcomes in patients with acute arterial occlusion of the posterior circulation.

Design: Multicentre randomised controlled trial.

Setting: 31 hospitals in China, 24 January 2023 to 24 August 2023.

View Article and Find Full Text PDF

Introduction: Ischaemic heart disease (IHD) and cerebrovascular disease are leading causes of morbidity and mortality worldwide. Cerebral small vessel disease (CSVD) is a leading cause of dementia and stroke. While coronary small vessel disease (coronary microvascular dysfunction) causes microvascular angina and is associated with increased morbidity and mortality.

View Article and Find Full Text PDF

Purpose: It was noticed that anterior choroidal artery (AChoA) aneurysms appear to rupture at relatively smaller sizes compared with aneurysms in other intracranial locations, based on anecdotal clinical experience. We therefore aimed to compare ruptured AChoA aneurysms with other ruptured aneurysms in other intracranial locations, pertaining to aneurysm dimensions. This may help in finding out if the rupture risk stratification, based on the amalgamation of aneurysms of multiple locations in one group, precisely estimates aneurysm rupture risk.

View Article and Find Full Text PDF

The brain is composed of a dense and ramified vascular network of arteries, veins and capillaries of various sizes. One way to assess the risk of cerebrovascular pathologies is to use computational models to predict the physiological effects of reduced blood supply and correlate these responses with observations of brain damage. Therefore, it is crucial to establish a detailed 3D organization of the brain vasculature, which could be used to develop more accurate in silico models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!