Dimeric analogues of non-cationic tricyclic aromatic carboxamides are a new class of cytotoxic agents.

Anticancer Drug Des

Auckland Cancer Society Research Centre, Faculty of Medicine and Health Science, University of Auckland, New Zealand.

Published: June 1999

A series of tricyclic aromatic carboxamides, and their corresponding dimeric analogues, were prepared and their growth-inhibitory properties were evaluated in a series of cell lines. The dimeric compounds were prepared by reaction of the appropriate acids with carbonyl-1,1'-diimidazole, isolating the resulting imidazolides, and reacting these with a stoichiometric amount of the diamine. The monomeric carboxamides containing a (CH2)2NMe2 side chain had widely differing inhibitory potencies, with the known nitronaphthalimide (mitonafide) and acridine-4-carboxamide (DACA) being the most potent. The corresponding bis analogues, linked by a (CH2)3NMe(CH2)3 chain, were generally more potent, with the largest increases (dimer/monomer ratio 20- to 30-fold) seen for the nitronaphthalimides and the phenazines. Based on the intrinsic cytotoxicity of the monomers and the highest degree of increase in cytotoxicity on dimerization, the most interesting chromophores appear to be the acridine-4-carboxamide and phenazine-1-carboxamide. Both of these compounds showed significant growth delays (approximately 6 days) in an in vivo colon 38 tumour model in mice.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dimeric analogues
8
tricyclic aromatic
8
aromatic carboxamides
8
analogues non-cationic
4
non-cationic tricyclic
4
carboxamides class
4
class cytotoxic
4
cytotoxic agents
4
agents series
4
series tricyclic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!