Chronic experiments were conducted on rats and rabbits; a study was made of the effect of carbidine on the conditioned defence reflexes in stimulation of the mesencephalic part of the reticular formation. Carbidine prevented the depression of the conditioned defence reflexes caused by stimulation of the mesencephalic portion of the reticular formation. This pointed to its depressive influence on the mentioned structures, and was confirmed by experiments on rabbits in recording changes in biocurrents under conditions of stimulation of the mesencephalic reticular formation.
Download full-text PDF |
Source |
---|
Proc Natl Acad Sci U S A
January 2025
Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.
The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.
View Article and Find Full Text PDFPsychophysiology
January 2025
Biological Psychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
Transcutaneous vagus nerve stimulation (tVNS) offers a non-invasive method to enhance noradrenergic neurotransmission in the human brain, thereby increasing cognitive control. Here, we investigate if changes in cognitive control induced by tVNS are mediated through locus coeruleus-induced modifications of neural activity in the anterior cingulate cortex. Young healthy participants engaged in a simple cognitive control task focusing on response inhibition and a more complex task that involved both response inhibition and working memory, inside a magnetic resonance imaging scanner.
View Article and Find Full Text PDFThe landscape of therapeutic deep brain stimulation (DBS) for locomotor function recovery is rapidly evolving. This review provides an overview of electrical neuromodulation effects on spinal cord injury (SCI), focusing on DBS for motor functional recovery in human and animal models. We highlight research providing insight into underlying cellular and molecular mechanisms.
View Article and Find Full Text PDFBrain Struct Funct
December 2024
Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.
Serotonin (5-HT) is an important neurotransmitter for cognition and neurogenesis in the dentate gyrus (DG), which occurs via movement stimulation such as physical activity. Brain 5-HT function changes secondary to aging require further investigation. We evaluated whether aged animals would present changes in the number of 5-HT neurons in regions such as the dorsal (DRN) and median (MRN) raphe nuclei and possible changes in the rate of cellular activation in the DG in response to acute running, as a reduction in 5-HT neurons could contribute to a decline in neuronal activation in the DG in response to physical activity in aged mice.
View Article and Find Full Text PDFElife
December 2024
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
Hearing involves analyzing the physical attributes of sounds and integrating the results of this analysis with other sensory, cognitive, and motor variables in order to guide adaptive behavior. The auditory cortex is considered crucial for the integration of acoustic and contextual information and is thought to share the resulting representations with subcortical auditory structures via its vast descending projections. By imaging cellular activity in the corticorecipient shell of the inferior colliculus of mice engaged in a sound detection task, we show that the majority of neurons encode information beyond the physical attributes of the stimulus and that the animals' behavior can be decoded from the activity of those neurons with a high degree of accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!