The purpose of this study was to determine the safety, toxicity, and antitumor immune response following S.C. immunizations with a mixture of irradiated, autologous tumor cells and autologous fibroblasts that were genetically modified to express the gene for interleukin 2 (IL-2) in patients with colorectal carcinoma. Ten patients were treated with a fixed dose of tumor cells (10(7)) and escalating doses of fibroblasts secreting IL-2 (per 24 h): 100 units (three patients), 200 units (three patients), 400 units (three patients), and 800 units (one patient). Pre- and posttreatment peripheral blood mononuclear cells were evaluated for evidence of antitumor immune responses. Fatigue and/or flu-like symptoms were experienced by seven patients and delayed-type hypersensitivity-like skin reactions were observed at the sites of the second or subsequent vaccinations in five patients. Low frequencies of tumor cytotoxic T-cell precursors (range, 1/190,000-1/1,320,000 peripheral blood mononuclear cells) were detected prior to therapy in four of seven patients. There was a 5-fold increase following treatment in the frequency of tumor cytotoxic T-cell precursors in two of six evaluable patients. Some patients with colorectal cancer have low frequencies of tumor cytotoxic T-cell precursors that may be increased by this well-tolerated form of IL-2 gene therapy, which warrants continued clinical evaluation.
Download full-text PDF |
Source |
---|
Photochem Photobiol Sci
January 2025
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.
View Article and Find Full Text PDFBioDrugs
January 2025
Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.
View Article and Find Full Text PDFDig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!