Avoparcin, like vancomycin, teicoplanin, and ristocetin A, belongs to the family of macrocyclic glycopeptide antibiotics. These antibiotics have all been used as effective chiral selectors for capillary electrophoresis (CE), thin-layer chromatography (TLC), and high performance liquid chromatography (HPLC). The present work focuses on avoparcin, which has been shown to be an excellent chiral selector for the CE enantioseparation of many N-blocked amino acids, as well as several anti-inflammatory drugs of pharmaceutical importance. The use of avoparcin as a chiral run buffer additive in CE is discussed, as well as the effects of changing experimental parameters, like avoparcin concentration, pH, organic modifiers, etc. Comparisons of enantioseparations of some N-3,5-dinitrobenzoyl-derivatized amino acids, using either avoparcin, ristocetin A, teicoplanin, or vancomycin in the run buffer, are also made. In general, vancomycin had the longest migration times, and ristocetin A the shortest, while avoparcin was intermediate. Generally, at least one of the four chiral selectors produced an excellent separation, while a different macrocyclic antibiotic produced a poor separation. Currently, we see no way to predict which chiral run buffer additive will be best or worst for an individual solute.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1522-2683(19990801)20:12<2438::AID-ELPS2438>3.0.CO;2-C | DOI Listing |
Chirality
January 2025
Department of Chemistry, Shyam Lal College, University of Delhi, New Delhi, India.
Enantiomeric analysis of chiral drugs is very significant, as their enantiomers display different pharmacological or toxicological behavior towards living systems. Among these drugs, β-blockers are available as racemates, where their enantiomers display different pharmacological effects. Herein, we report enantioselective separation of two β-blockers, namely, atenolol and sotalol, using a derivatization approach.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu 226001, PR China. Electronic address:
The joint use of deep eutectic solvents (DESs) and cyclodextrins (CDs) has been well demonstrated to have a promoting effect on chiral separation in capillary electrophoresis (CE). These studies focused on constructing synergistic separation systems by adding DESs and CDs to the buffer solution respectively. In this work, for the first time, β-cyclodextrin (β-CD), methyl-β-cyclodextrin (M-β-CD), and hydroxypropyl-β-cyclodextrin (HP-β-CD) were directly used as precursors to prepare several CDs-based deep eutectic supramolecules (DESUPs) by assembling with two organic acids (L-lactic acid and L-malic acid) in different ratios through a simple two-phase mixing.
View Article and Find Full Text PDFJ Sep Sci
November 2024
Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan.
A chiral monolith stationary phase was fabricated by modifying the monolith surface using L-cysteine through a thiol-epoxy click reaction. L-cysteine-bonded polymer monolith was characterized by scanning electron microscopy/energy-dispersive X-ray and attenuated total reflectance Fourier-transformed infrared. The monomer content and modification temperature were carefully optimized to create a polymer monolith with excellent mechanical stability and permeability.
View Article and Find Full Text PDFFood Chem
February 2025
College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China. Electronic address:
A novel, deep eutectic solvent (DES)-assisted sodium cholate (SC)-chiral microemulsion electrokinetic chromatography method is presented for separation of five flavonoid glycoside enantiomers, namely hesperidin, naringin, narirutin, eriocitrin, and neoeriocitrin. Herein, we develop a novel, green DES, whose addition considerably enhances the separation performance through multiple synergistic effects. A series of factors notably affecting chiral separation are systematically optimized: type and concentration of cyclodextrin, DES, and SC, oil phase type, and pH.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China.
Sulfur-centered electrophilic 'warheads' have emerged as key components for chemical proteomic probes through sulfur-exchange chemistry (SuFEx) with protein nucleophiles. Among these functional groups, sulfonimidoyl fluorides (SIFs) stand out for their modifiable sites, tunable electrophilicities, and chiral sulfur-center, presenting exciting possibilities for new covalent chemical probes. However, the synthetic access to chiral SIFs has been a challenge, limiting their exploration and applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!