The multielectrode current source (MECS) interstitial hyperthermia (IHT) system uses thermocouple thermometry. To obtain a homogeneous temperature distribution and to limit the number of traumas due to the implanted catheters, most catheters are used for both heating and thermometry. Implications of temperature measurement inside applicators are discussed. In particular, the impact of self-heating of both the applicator and the afterloading catheter were investigated. A one-dimensional cylindrical model was used to compute the difference between the temperature rise inside the applicators (deltaTin) and in the tissue just outside the afterloading catheter (deltaTout) as a function of power absorption in the afterloading catheter, self-heating of the applicator and the effective thermal conductivity of the surrounding tissue. Furthermore, the relative artefact (ERR), i.e. (deltaTin - deltaTout)/deltaTin, was measured in a muscle equivalent agar phantom at different positions in a dual-electrode applicator and for different catheter materials. A method to estimate the tissue temperature by power-off temperature decay measurement inside the applicator was investigated. Using clinical dual-electrode applicators in standard brachytherapy catheters in a muscle-equivalent phantom, deltaTin is typically twice as high as deltaTout. The main reason for this difference is self-heating of the thin feeder wires in the centre of the applicator. The measurement error caused by energy absorption in the afterloading catheter is small, i.e. even for materials with a high dielectric loss factor it is less than 5%. About 5 s after power has been switched off, Tin in the electrodes represents the maximum tissue temperature just before power-off. This delay time (t(delay)) and ERR are independent of Tin. However, they do depend on the thermal properties of the tissue. Therefore, ERR and t(delay) and their stability in perfused tissues have to be investigated to enable a reliable estimation of the tissue temperatures around electrodes in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/44/6/305 | DOI Listing |
J Intensive Care
January 2025
Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, USA.
Sepsis often leads to vasoplegia and a hyperdynamic cardiac state, with treatment focused on restoring vascular tone. However, sepsis can also cause reversible myocardial dysfunction, particularly in the elderly with pre-existing heart conditions. The Surviving Sepsis Campaign Guidelines recommend using dobutamine with norepinephrine or epinephrine alone for patients with septic shock with cardiac dysfunction and persistent hypoperfusion despite adequate fluid resuscitation and stable blood pressure.
View Article and Find Full Text PDFCureus
October 2024
Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, USA.
Med Phys
October 2024
Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan.
Background: Comprehensive quality assurance (QA) for a seamless workflow of high-dose-rate brachytherapy, from imaging to planning and irradiation, is uncommon, and QA of the source dwell position is performed in one- or two-dimensions. Gel dosimetry using magnetic resonance imaging (MRI) is effective in verifying the three-dimensional distribution of doses for image-guided brachytherapy (IGBT). However, MRI scanners are not readily accessible, and MRI scanning is time-consuming.
View Article and Find Full Text PDFESC Heart Fail
October 2024
Cardiac Intensive Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
J Am Coll Cardiol
August 2024
Heart Centre, The Alfred Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!