In undisturbed bone marrow, most hemopoietic stem cells are nonproliferating despite the presence of multiple growth factors. Endogenous inhibitory factors are responsible for maintenance of this quiescence. Previously we sequenced and synthesized the inhibitory pentapeptide pGlu-Glu-Asp-Cys-Lys (pEEDCK), which originally derives from granulocytes, and investigated the role of this peptide in stem cell quiescence. To provide some mechanistic insight, in the present work we studied the structural relationship of this peptide to specific growth-factor-derived sequence motifs. In the murine system in vivo as well as in long-term bone marrow, antiserum to pEEDCK produced a significant stimulation of formation of colony-forming units-granulocyte/macrophage. Binding of peptides to proteins often takes place at hydropathically complementary sites. Therefore, we searched for peptides corresponding to the complementary sequence to pEEDCK. We identified antisense sequences in the genes of various cytokines and cytokine receptors including interleukin-11. The corresponding peptide Val-Leu-Leu-Thre-Arg (VLLTR) and several other peptides hydropathically complementary to pEEDCK were synthesized. We found that pEEDCK binds specifically to these peptides as well as to complete interleukin-11. Dissociation constants were in the 10 microM range. The peptide hydropathically corresponding to pEEDCK (VLLTR) was found to stimulate colony-forming units-granulocyte/macrophage formation. Our data suggest that pEEDCK could exert a coordinating function in the hemopoietic cytokine network by binding to multiple regulatory proteins and modulating their activity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

peedck
8
stem cell
8
sequence motifs
8
growth factors
8
bone marrow
8
colony-forming units-granulocyte/macrophage
8
hydropathically complementary
8
hemoregulatory peptide
4
peptide peedck
4
peedck inhibit
4

Similar Publications

Rapamycin, an inhibitor of mTOR activity, is a potent inducer of erythroid differentiation and fetal hemoglobin production in β-thalassemic patients. Mithramycin (MTH) was studied to see if this inducer of K562 differentiation also operates through inhibition of mTOR. We can conclude from the study that the mTOR pathway is among the major transcript classes affected by mithramycin-treatment in K562 cells and a sharp decrease of raptor protein production and p70S6 kinase is detectable in mithramycin treated K562 cells.

View Article and Find Full Text PDF

Copper is an essential trace metal for physiological functions, whereas copper overload causes cytotoxicity in living organisms. Genetically determined systems regulate acquisition, distribution and storage for copper maintenance and homeostasis. The Human ATP7A copper transport ATPase modulates intracellular copper distribution, which is critical for copper-dependent enzymes such as superoxide dismutase (SOD1).

View Article and Find Full Text PDF

Urocortin (Ucn), a highly conserved metazoan gene, is related to stress and feeding, behaviors with significant gender differences. We investigated whether estrogens regulate the expression of the Ucn gene using transient transfection in PC12 cells with the human Ucn (hUcn) promoter coupled to luciferase and either alpha or beta estrogen receptors (ERalpha or ERbeta, respectively). The results demonstrate that estradiol (E2) increases the activity of the hUcn promoter via ERalpha, and decreases hUcn promoter activity through ERbeta.

View Article and Find Full Text PDF

The granulocyte-derived hemoregulatory peptide pyroGlu-Glu-Asp-Cys-Lys = pEEDCK is known to keep hematopoietic cells quiescent. When oxidized to its dimeric form (pEEDCK)2, it activates growth of hematopoietic progenitors in association with stroma-derived cytokines. (pEEDCK)2 has a Cys-Cys motif which is also a typical feature of the macrophage inflammatory protein (MIP-1alpha).

View Article and Find Full Text PDF

The stem cells of the bone marrow have the capacity for both self-renewal and derivation of all the blood cell lineages. Consequently, toxicity to these cells can result in neutropenia, agranulocytosis, thrombocytopenia, pancytopenia, or aplastic anemia. Many anticancer drugs adversely affect the bone marrow, and neutropenia is a common limiting factor in dose escalation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!