ATP and UTP have been proposed for use as therapeutic treatment of the abnormal ion transport in the airway epithelium in cystic fibrosis (CF), the most characteristic feature of which is permanent infection by Pseudomonas aeruginosa. As for diverse gram-negative bacteria, this pathogenic bacterium accumulates diffusible N-acylhomoserine lactone (AHL) signal molecules, and when a threshold concentration is reached, virulence factor genes are activated. Human submucosal tracheal gland serous (HTGS) cells are believed to play a major role in the physiopathology of CF. Since ATP and UTP stimulate CF epithelial cells through P2Y receptors, we sought to determine whether CF HTGS cells are capable of responding to the AHLs N-butanoyl-L-homoserine lactone (BHL), N-hexanoyl-L-homoserine lactone (HHL), N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL), and N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), with special reference to P2Y receptors. All AHLs inhibited ATP- and UTP-induced secretion by CF HTGS cells. The 50% inhibitory concentrations were as high as 10 and 5 microM for BHL and HHL, respectively, but were only 0.3 and 0.4 pM for OdDHL and OHHL, respectively. Furthermore, all AHLs down-regulated the expression of the P2Y2 and P2Y4 receptors. Ibuprofen and nordihydroguaiaretic acid were able to prevent AHL inhibition of the responses to nucleotides, but neither dexamethasone nor indomethacin was able to do this. These data indicate that AHLs may alter responsiveness to ATP and UTP by CF HTGS cells and suggest that, in addition to ATP and/or UTP analogues, ibuprofen may be of use for a combinational pharmacological therapy for CF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC96855PMC
http://dx.doi.org/10.1128/IAI.67.10.5076-5082.1999DOI Listing

Publication Analysis

Top Keywords

htgs cells
16
p2y receptors
12
atp utp
12
pseudomonas aeruginosa
8
n-3-oxododecanoyl-l-homoserine lactone
8
cystic fibrosis
8
tracheal gland
8
lactone
6
cells
6
aeruginosa quorum-sensing
4

Similar Publications

Leafhoppers comprise over 20,000 plant-sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts, Sulcia and Nasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal-level assembly of the aster leafhopper's genome (ALF; Macrosteles quadrilineatus).

View Article and Find Full Text PDF

Different high temperatures adversely affect crop and algal yields with various responses in photosynthetic cells. The list of genes required for thermotolerance remains elusive. Additionally, it is unclear how carbon source availability affects heat responses in plants and algae.

View Article and Find Full Text PDF

Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes.

View Article and Find Full Text PDF

Horizontally transferred genes (HTGs) play a key role in animal symbiosis, and some horizontally transferred genes or proteins are highly expressed in specialized host cells (bacteriocytes). However, it is not clear how HTGs are regulated, but microRNAs (miRNAs) are prime candidates given their previously demonstrated roles in symbiosis and impacts on the expression of host genes. A horizontally acquired PanBC that is highly expressed in whitefly bacteriocytes can cooperate with an obligate symbiont Portiera for pantothenate production, facilitating whitefly performance and Portiera titre.

View Article and Find Full Text PDF

Kidney transplantation from triple-knockout pigs expressing multiple human proteins in cynomolgus macaques.

Am J Transplant

January 2022

Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Porcine cells devoid of three major carbohydrate xenoantigens, αGal, Neu5GC, and SDa (TKO) exhibit markedly reduced binding of human natural antibodies. Therefore, it is anticipated that TKO pigs will be better donors for human xenotransplantation. However, previous studies on TKO pigs using old world monkeys (OWMs) have been disappointing because of higher anti-TKO pig antibodies in OWMs than humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!