Antioxidant activity of melatonin in human erythrocytes, exposed to oxidative stress by cumene hydroperoxide (cumOOH), was investigated. CumOOH at 300 microM progressively oxidized a 1% suspension of red blood cells (RBCs), leading to 100% hemolysis in 180 min. Malondialdehyde and protein carbonyls in the membrane showed a progressive increase, as a result of the oxidative damage to membrane lipids and proteins, reaching peak values after 30 and 40 min, respectively. The membrane antioxidant vitamin E and the cytosolic reduced glutathione (GSH) were totally depleted in 20 min. As a consequence of the irreversible oxidative damage to hemoglobin (Hb), hemin accumulated into the RBC membrane during 40 min. Sodium dodecyl sulfate (SDS) gel electrophoresis of membrane proteins showed a progressive loss of the cytoskeleton proteins and formation of low molecular weight bands and protein aggregates, with an increment of the intensity of the Hb band. Melatonin at 50 microM strongly enhanced the RBC resistance to oxidative lysis, leading to a 100% hemolysis in 330 min. Melatonin had no effect on the membrane lipid peroxidation, nor prevented the consumption of glutathione (GSH) or vitamin E. However, it completely inhibited the formation of membrane protein carbonyls for 20 min and hemin precipitation for 10 min. The electrophoretic pattern provided further evidence that melatonin delayed modifications to the membrane proteins and to Hb. In addition, RBCs incubated for 15 min with 300 microM cumOOH in the presence of 50 microM melatonin were less susceptible, when submitted to osmotic lysis, than cells incubated in its absence. Extraction and high-performance liquid chromatography (HPLC) analysis showed a much more rapid consumption of melatonin during the first 10 min of incubation, then melatonin slowly decreased up to 30 min and remained stable thereafter. Equilibrium partition experiments showed that 15% of the melatonin in the incubation mixture was recovered in the RBC cytosol, and no melatonin was extracted from RBC membrane. However, 35% of the added melatonin was consumed during RBC oxidation. Hydroxyl radical trapping agents, such as dimethylsulfoxide or mannitol, added into the assay in a 1,000 times molar excess, did not vary melatonin consumption, suggesting that hydroxyl radicals were not involved in the indole consumption. Our results indicate that melatonin is actively taken up into erythrocytes under oxidative stress, and is consumed in the defence of the cell, delaying Hb denaturation and release of hemin. RBCs are highly exposed to oxygen and can be a site for radical formation, under pathological conditions, which results in their destruction. A protective role of melatonin should be explored in hemolytic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-079x.1999.tb00602.x | DOI Listing |
Domest Anim Endocrinol
January 2025
BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain. Electronic address:
This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
Circadian rhythm plays a critical role in the progression of autoimmune diseases. While our previous study demonstrated the therapeutic effects of melatonin in experimental autoimmune uveitis, the involvement of circadian rhythm remained unclear. Using a light-induced circadian rhythm disruption model, we showed that disrupted circadian rhythms exacerbate autoimmune uveitis by impairing the stability and function of Treg cells.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1093/sleepadvances/zpae070.153.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
Background: Dietary supplementation for beef cattle, using natural plant extracts, such as oregano essential oil (OEO), has proven effective in enhancing growth performance, beef production quantity and quality, and ensuring food safety. However, the precise mechanisms underlying these effects remain unclear. This study investigated the impact of OEO on carcass traits, muscle fiber structure, meat quality, oxidative status, flavor compounds, and gene regulatory mechanisms in the longissimus thoracis (LT) muscles of beef cattle.
View Article and Find Full Text PDFJ Pineal Res
January 2025
Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.
Circadian clocks in the body drive daily cycles in physiology and behavior. A master clock in the brain maintains synchrony with the environmental day-night cycle and uses internal signals to keep clocks in other tissues aligned. Work in cell cultures uncovered cyclic changes in tissue oxygenation that may serve to reset and synchronize circadian clocks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!