[Concentrating dopamine in liposomes using transmembrane gradient of ammonium sulfate].

Bioorg Khim

Lomonosov State Academy of Fine Chemical Technology, Moscow, Russia.

Published: May 1999

The active loading of liposomes from egg phosphatidylcholine and cholesterol with dopamine using an ammonium sulfate gradient was studied. Our conditions allowed the enrichment of the monolamellar liposomes with 90% dopamine added to the medium and, thus, considerably improve the dopamine/lipid ratio. Dopamine-containing liposomes with tocopherol in their lipid bilayer were shown to be stable for 3 weeks.

Download full-text PDF

Source

Publication Analysis

Top Keywords

[concentrating dopamine
4
liposomes
4
dopamine liposomes
4
liposomes transmembrane
4
transmembrane gradient
4
gradient ammonium
4
ammonium sulfate]
4
sulfate] active
4
active loading
4
loading liposomes
4

Similar Publications

Background: Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss, Lewy body build-up, and motor dysfunction. One of the primary pathogenic mechanisms of PD development is autophagy dysfunction and nitric oxide-mediated neurotoxicity.

Purpose: The current study focuses on autophagy and nitric oxide (NO) signaling roles in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated PD mice and their protection by their modulators.

View Article and Find Full Text PDF

The concentrations of extracellular and intracellular signaling molecules, such as dopamine and cAMP, change over both fast and slow timescales and impact downstream pathways in a cell-type specific manner. Fluorescence sensors currently used to monitor such signals are typically optimized to detect fast, relative changes in concentration of the target molecule. They are less well suited to detect slowly-changing signals and rarely provide absolute measurements of either fast and slow signaling components.

View Article and Find Full Text PDF

Developmental trajectories during the transition from adolescence to adulthood contribute to the establishment of stable, adult forms of operation. Understanding the neural mechanisms underlying this transition is crucial for identifying variability in normal development and the onset of psychiatric disorders, which typically emerge during this time. Habitual behaviors can serve as a model for understanding brain mechanisms underlying the stabilization of adult behavior, while also conferring risk for psychopathologies.

View Article and Find Full Text PDF

Behavioral and molecular neurotoxicity of thermally degraded polystyrene in Caenorhabditis elegans.

J Hazard Mater

January 2025

Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. Electronic address:

Microplastics are pervasive environmental contaminants found across diverse ecosystems, inducing toxic effects in a wide range of organisms. However, the neurotoxic effects of thermally degraded polystyrene (T-PS) and its underlying mechanisms remain poorly unexplored. In this study, Caenorhabditis elegans was exposed to environmentally relevant concentrations of T-PS (0.

View Article and Find Full Text PDF

1-Methylxanthine (1-MX) is the major metabolite of caffeine and paraxanthine and might contribute to their activity. 1-MX is an adenosine receptor antagonist and increases the release and survivability of neurotransmitters; however, no study has addressed the potential physiological effects of 1-MX ingestion. The aim of this study was to compare the effect of 1-MX on memory and related biomarkers in rats compared to control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!