The structure of the O-antigenic polysaccharide from the enterohemorrhagic Escherichia coli O91 has been determined using primarily NMR spectroscopy on the (13)C-enriched polysaccharide. The O-antigen is composed of pentasaccharide repeating units with the following structure: -->4)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->4)-beta-D-GlcpA-6-N- Gly -(1-->3)-beta-D-GlcpNAc-(1-->4)-alpha-D-Quip-3-N-[(R)-3-hydroxy butyra mido]-(1-->. The bacterium was grown with D-[UL-(13)C]glucose in the medium which resulted in an overall degree of labeling of approximately 65% in the sugar residues and approximately 50% in the N-acyl substituents, indicating some metabolic dilution in the latter. The (13)C-enrichment of the polysaccharide proved valuable since NMR assignments could be made on the basis of (13)C, (13)C-connectivity in uniformly labeled residues. The biosynthesis of the (R)-3-hydroxybutyramido substituent via C(2) fragments was identified by NMR spectroscopy. The (R)-configuration at C3 is in accord with fatty acid biosynthesis. Additional cultures with specifically labeled D-[1-(13)C]glucose or D-[6-(13)C]glucose corroborated the direct incorporation of glucose as the building block for the hexose skeletons in the polysaccharide and the biosynthesis of acyl substituents occurring via the triose pool followed by decarboxylation to give acetyl building blocks labeled with (13)C at the methyl group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi9910629 | DOI Listing |
Nat Commun
January 2025
Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
Coronaviruses evade detection by the host immune system with the help of the endoribonuclease Nsp15, which regulates levels of viral double stranded RNA by cleaving 3' of uridine (U). While prior structural data shows that to cleave double stranded RNA, Nsp15's target U must be flipped out of the helix, it is not yet understood whether Nsp15 initiates flipping or captures spontaneously flipped bases. We address this gap by designing fluorinated double stranded RNA substrates that allow us to directly relate a U's sequence context to both its tendency to spontaneously flip and its susceptibility to cleavage by Nsp15.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, School of Engineering and Digital Science, Nazarbayev University, Astana 010000, Kazakhstan.
The escalating global energy demand necessitates enhanced oil recovery methods, particularly offshore. Biological nanotechnology offers sustainable, environment-friendly, and cost-effective alternatives to synthetic chemicals. This study explored the synthesis of polysaccharide-based nanoparticles (PNPs) from Corchorus olitorius leaves using a weak acid-assisted ultrasonic method and their application as nanocomposites for oil recovery.
View Article and Find Full Text PDFBiomol NMR Assign
January 2025
Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
Cyclic GMP-AMP synthase (cGAS) is a DNA-sensing enzyme that is a member of the nucleotidyltransferase (NTase) family and functions as a DNA sensor. The protein is comprised of a catalytic NTase core domain and an unstructured hypervariable N-terminal domain (NTD) that was reported to increase protein activity by providing an additional DNA-binding surface. We report nearly complete H, N, and C backbone chemical-shift assignments of mouse cGAS NTD (residues 5-146), obtained with a set of 3D and 4D solution NMR experiments.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
Brain function requires continuous energy supply. Thus, unraveling brain metabolic regulation is critical not only for our basic understanding of overall brain function, but also for the cellular basis of functional neuroimaging techniques. While it is known that brain energy metabolism is exquisitely compartmentalized between astrocytes and neurons, the metabolic and neuro-energetic basis of brain activity is far from fully understood.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Jinan University, State Key Laboratory of Bioactive Molecules and Druggability Assessment, CHINA.
Secupyritines A‒C are unique polycyclic Securinega alkaloids isolated from medicinal plant Flueggea suffruticosa. They feature a distinctive 6/6/6/5/6 fused pentacyclic ring system with a highly strained 2-oxa-6-aza[4.4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!