AI Article Synopsis

Article Abstract

Lung cancer is the leading cause of death in the United States, and it demonstrates a strong etiological association with smoking. The nicotine-derived nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) reproducibly induces pulmonary adenocarcinomas (ACs) in laboratory rodents and is considered an important contributing factor to the high lung cancer burden observed in smokers. It has been shown that the development of NNK-induced ACs in mice is reduced by inhibitors of cyclooxygenase and lipoxygenase and that the growth of human AC cell lines is regulated by beta-adrenergic receptors. On the basis of structural similarities of NNK with classic beta-adrenergic agonists, we tested the hypothesis that NNK stimulates the growth of human AC cells via agonist-binding to beta-adrenergic receptors, resulting in the release of arachidonic acid (AA). In support of this hypothesis, radioreceptor assays with transfected CHO cell lines stably expressing the human beta1- or beta2-adrenergic receptor demonstrated high affinity binding of NNK to each of these receptors. Two human AC cell lines expressed beta1- and beta2-adrenergic receptors by reverse transcription-PCR and responded to NNK with the release of AA and an increase in DNA synthesis. Beta-adrenergic antagonists completely blocked the release of AA and increase in DNA synthesis. The cyclooxygenase inhibitor aspirin and the 5-lipoxygenase inhibitor MK-886 both partially inhibited DNA synthesis in response to NNK. Our findings identify the direct interaction of NNK with beta-adrenergic, AA-dependent pathways as a novel mechanism of action which may significantly contribute to the high cancer-causing potential of this nitrosamine. Moreover, NNK may also contribute to the development of smoking-related nonneoplastic disease via this mechanism.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dna synthesis
16
cell lines
12
release arachidonic
8
arachidonic acid
8
lung cancer
8
nnk
8
growth human
8
human cell
8
beta-adrenergic receptors
8
beta1- beta2-adrenergic
8

Similar Publications

Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.

View Article and Find Full Text PDF

Tumour DNA methylation markers associated with breast cancer survival: a replication study.

Breast Cancer Res

January 2025

Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.

Background: Tumour DNA methylation has been investigated as a potential marker for breast cancer survival, but findings often lack replication across studies.

Methods: This study sought to replicate previously reported associations for individual CpG sites and multi-CpG signatures using an Australian sample of 425 women with breast cancer from the Melbourne Collaborative Cohort Study (MCCS). Candidate methylation sites (N = 22) and signatures (N = 3) potentially associated with breast cancer survival were identified from five prior studies that used The Cancer Genome Atlas (TCGA) methylation dataset, which shares key characteristics with the MCCS: comparable sample size, tissue type (formalin-fixed paraffin-embedded; FFPE), technology (Illumina HumanMethylation450 array), and participant characteristics (age, ancestry, and disease subtype and severity).

View Article and Find Full Text PDF

Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.

View Article and Find Full Text PDF

Bacterial indole-3-propionic acid inhibits macrophage IL-1β production through targeting methionine metabolism.

Sci China Life Sci

January 2025

State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.

The gut microbiota plays key roles in host health by shaping the host immune responses through their metabolites, like indole derivatives from tryptophan. However, the direct role of these indole derivatives in macrophage fate decision and the underlying mechanism remains unknown. Here, we found that bacterial indole-3-propionic acid (IPA) downregulates interleukin-1beta (IL-1β) production in M1 macrophages through inhibition of nuclear factor-kappa B (NF-κB) signaling.

View Article and Find Full Text PDF

Functionally-informed fine-mapping identifies genetic variants linking increased CHD1L expression and HIV restriction in monocytes.

Sci Rep

January 2025

Sexually Transmitted and Bloodborne Infections Surveillance and Molecular Epidemiology, Sexually Transmitted and Bloodborne Infections Division at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, R3E 3L5, Canada.

Human Immunodeficiency Virus Type 1 (HIV) set-point viral load is a strong predictor of disease progression and transmission risk. A recent genome-wide association study in individuals of African ancestries identified a region on chromosome 1 significantly associated with decreased HIV set-point viral load. Knockout of the closest gene, CHD1L, enhanced HIV replication in vitro in myeloid cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!