Objectives: Air pollution particulates have been identified as having adverse effects on respiratory health. The present study was undertaken to further clarify the effects of diesel exhaust on bronchoalveolar cells and soluble components in normal healthy subjects. The study was also designed to evaluate whether a ceramic particle trap at the end of the tail pipe, from an idling engine, would reduce indices of airway inflammation.

Methods: The study comprised three exposures in all 10 healthy never smoking subjects; air, diluted diesel exhaust, and diluted diesel exhaust filtered with a ceramic particle trap. The exposures were given for 1 hour in randomised order about 3 weeks apart. The diesel exhaust exposure apperatus has previously been carefully developed and evaluated. Bronchoalveolar lavage was performed 24 hours after exposures and the lavage fluids from the bronchial and bronchoalveolar region were analysed for cells and soluble components.

Results: The particle trap reduced the mean steady state number of particles by 50%, but the concentrations of the other measured compounds were almost unchanged. It was found that diesel exhaust caused an increase in neutrophils in airway lavage, together with an adverse influence on the phagocytosis by alveolar macrophages in vitro. Furthermore, the diesel exhaust was found to be able to induce a migration of alveolar macrophages into the airspaces, together with reduction in CD3+CD25+ cells. (CD = cluster of differentiation) The use of the specific ceramic particle trap at the end of the tail pipe was not sufficient to completely abolish these effects when interacting with the exhaust from an idling vehicle.

Conclusions: The current study showed that exposure to diesel exhaust may induce neutrophil and alveolar macrophage recruitment into the airways and suppress alveolar macrophage function. The particle trap did not cause significant reduction of effects induced by diesel exhaust compared with unfiltered diesel exhaust. Further studies are warranted to evaluate more efficient treatment devices to reduce adverse reactions to diesel exhaust in the airways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1757777PMC
http://dx.doi.org/10.1136/oem.56.8.527DOI Listing

Publication Analysis

Top Keywords

diesel exhaust
44
particle trap
24
exhaust
13
ceramic particle
12
diesel
11
exposure diesel
8
cells soluble
8
trap tail
8
tail pipe
8
diluted diesel
8

Similar Publications

This work examines the impact of the electrification of the Holon-Bat Yam passenger train line (central Israel) on air pollutant concentrations using data collected from air quality monitoring stations that operated at the train stations across the electrified train line. We present statistically significant reduction in the annual average NO, NO and NO concentrations (29-45%, 79-85% and 65-75%, respectively), attributed to the electrification of the passenger train line. The drop in the NO and NO concentrations was much stronger than in the NO concentrations, since NO is the main nitrogen species emitted by diesel locomotives.

View Article and Find Full Text PDF

This paper proposes a Q-learning-driven butterfly optimization algorithm (QLBOA) by integrating the Q-learning mechanism of reinforcement learning into the butterfly optimization algorithm (BOA). In order to improve the overall optimization ability of the algorithm, enhance the optimization accuracy, and prevent the algorithm from falling into a local optimum, the Gaussian mutation mechanism with dynamic variance was introduced, and the migration mutation mechanism was also used to enhance the population diversity of the algorithm. Eighteen benchmark functions were used to compare the proposed method with five classical metaheuristic algorithms and three BOA variable optimization methods.

View Article and Find Full Text PDF

Investigating the effects of urbanization at the county level on the balance of the carbon budget is essential for progress toward achieving "dual carbon" objectives at the county scale. Based on land use and economic data, this study elucidates the spatiotemporal evolution of urbanization and carbon budget balance ratio in 84 counties in Jiangxi Province from 1980 to 2020. Optimal geographic detectors and geographically weighted random forests were used to explore the impact of urbanization on the carbon budget balance ratio.

View Article and Find Full Text PDF

Local Climate Might Amplify Economic and Environmental Impacts of Electric Vehicles in China.

Environ Sci Technol

January 2025

Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China.

Electric vehicles (EVs) are crucial for addressing the intertwined challenges of climate change and air pollution. The multiaspect benefits of EVs are highly dependent on local climate conditions, yet the impacts of regional heterogeneity in the context of future climate change remain unclear. Here, we develop a systemic modeling framework integrating fleet modeling, emission projection, index decomposition analysis, and detailed cost assessment to identify local drivers and potential trade-offs behind electrification.

View Article and Find Full Text PDF

This study evaluates atmospheric polycyclic aromatic hydrocarbon (PAH) concentrations in a semi-urban area, Görükle, Turkey, from June 2021 to February 2022. The average concentration of ∑16 PAHs was 24.85 ± 19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!